[image:]

Technical Guide

PySpark Adaptive Query Execution (AQE) Configuration Guide

Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice

Table of Contents
[Executive Summary](#1-executive-summary)
[Introduction to AQE](#2-introduction-to-aqe)
2.1 [What is Adaptive Query Execution](#21-what-is-adaptive-query-execution)
2.2 [AQE Evolution](#22-aqe-evolution)
2.3 [How AQE Works](#23-how-aqe-works)
[Core AQE Features](#3-core-aqe-features)
3.1 [Dynamic Partition Coalescing](#31-dynamic-partition-coalescing)
3.2 [Dynamic Join Strategy Selection](#32-dynamic-join-strategy-selection)
3.3 [Skew Join Optimization](#33-skew-join-optimization)
[Enabling and Configuring AQE](#4-enabling-and-configuring-aqe)
4.1 [Basic Configuration](#41-basic-configuration)
4.2 [Feature-Specific Settings](#42-feature-specific-settings)
4.3 [Version Differences](#43-version-differences)
[Dynamic Partition Coalescing](#5-dynamic-partition-coalescing)
5.1 [How Coalescing Works](#51-how-coalescing-works)
5.2 [Configuration Parameters](#52-configuration-parameters)
5.3 [Tuning Guidelines](#53-tuning-guidelines)
5.4 [Examples and Benchmarks](#54-examples-and-benchmarks)
[Dynamic Join Strategy Selection](#6-dynamic-join-strategy-selection)
6.1 [Runtime Statistics Collection](#61-runtime-statistics-collection)
6.2 [Join Strategy Switching](#62-join-strategy-switching)
6.3 [Configuration Parameters](#63-configuration-parameters)
6.4 [Best Practices](#64-best-practices)
[Skew Join Optimization](#7-skew-join-optimization)
7.1 [Skew Detection Mechanism](#71-skew-detection-mechanism)
7.2 [Skew Handling Strategy](#72-skew-handling-strategy)
7.3 [Configuration Parameters](#73-configuration-parameters)
7.4 [Tuning for Different Scenarios](#74-tuning-for-different-scenarios)
[Local Shuffle Reader](#8-local-shuffle-reader)
8.1 [How It Works](#81-how-it-works)
8.2 [Configuration](#82-configuration)
8.3 [When to Disable](#83-when-to-disable)
[AQE and Query Planning](#9-aqe-and-query-planning)
9.1 [Query Stage Boundaries](#91-query-stage-boundaries)
9.2 [Re-optimization Points](#92-re-optimization-points)
9.3 [Statistics Propagation](#93-statistics-propagation)
[Monitoring AQE](#10-monitoring-aqe)
10.1 [Spark UI Indicators](#101-spark-ui-indicators)
10.2 [Plan Analysis](#102-plan-analysis)
10.3 [Performance Metrics](#103-performance-metrics)
[Configuration Templates](#11-configuration-templates)
11.1 [General Purpose](#111-general-purpose)
11.2 [ETL Workloads](#112-etl-workloads)
11.3 [Interactive Analytics](#113-interactive-analytics)
11.4 [Skew-Heavy Workloads](#114-skew-heavy-workloads)
[Troubleshooting AQE](#12-troubleshooting-aqe)
12.1 [Common Issues](#121-common-issues)
12.2 [Debugging Techniques](#122-debugging-techniques)
12.3 [Performance Regressions](#123-performance-regressions)
[AQE Limitations](#13-aqe-limitations)
13.1 [Known Limitations](#131-known-limitations)
13.2 [Workarounds](#132-workarounds)
[Advanced Topics](#14-advanced-topics)
14.1 [Custom Shuffle Partitioning](#141-custom-shuffle-partitioning)
14.2 [AQE with Bucketing](#142-aqe-with-bucketing)
14.3 [AQE in Streaming](#143-aqe-in-streaming)
[Configuration Reference](#15-configuration-reference)
[Quick Reference](#16-quick-reference)
1. Executive Summary
Adaptive Query Execution (AQE) is one of the most significant performance features in Apache Spark 3.x. It enables Spark to optimize query execution at runtime based on actual data statistics, rather than relying solely on estimates during query planning.
Key AQE Benefits:
Dynamic Partition Coalescing: Automatically combines small shuffle partitions
Dynamic Join Strategy: Switches to broadcast join when runtime data is small
Skew Join Handling: Automatically detects and handles data skew
Improved Resource Utilization: Better task sizing and distribution
Quick Start:
Enable AQE (default in Spark 3.2+)
spark.conf.set("spark.sql.adaptive.enabled", "true")
spark.conf.set("spark.sql.adaptive.coalescePartitions.enabled", "true")
spark.conf.set("spark.sql.adaptive.skewJoin.enabled", "true")
This guide provides comprehensive coverage of AQE configuration, tuning, and best practices.
2. Introduction to AQE
2.1 What is Adaptive Query Execution
AQE Overview:
┌───┐
│ Traditional vs Adaptive Query Execution │
└───┘

Traditional Execution:
┌──────────────┐ ┌──────────────┐ ┌──────────────┐
│ Query │───►│ Optimize │───►│ Execute │
│ Parsing │ │ (estimates) │ │ (fixed plan)│
└──────────────┘ └──────────────┘ └──────────────┘
 │
 Based on catalog
 statistics only

Adaptive Query Execution:
┌──────────────┐ ┌──────────────┐ ┌──────────────┐
│ Query │───►│ Initial │───►│ Execute │
│ Parsing │ │ Plan │ │ Stage 1 │
└──────────────┘ └──────────────┘ └──────┬───────┘
 │
 Collect Runtime Stats
 │
 ┌───────────────────┴───────────────────┐
 │ Re-optimize Plan │
 │ • Coalesce partitions │
 │ • Change join strategy │
 │ • Handle skew │
 └───────────────────┬───────────────────┘
 │
 ┌──────▼───────┐
 │ Execute │
 │ Stage 2 │
 │ (optimized) │
 └──────────────┘
2.2 AQE Evolution
Spark Version History:
	Version
	AQE Status
	Features

	Spark 2.x
	Not available
	N/A

	Spark 3.0
	Introduced (disabled)
	Coalescing, join switching

	Spark 3.1
	Enhanced
	Skew join improvements

	Spark 3.2
	Enabled by default
	More optimizations

	Spark 3.3+
	Mature
	Additional improvements

2.3 How AQE Works
AQE Execution Flow:
┌───┐
│ AQE Execution Flow │
└───┘

1. Query Compilation
 ├─ Parse SQL/DataFrame operations
 ├─ Generate initial logical plan
 ├─ Optimize with estimated statistics
 └─ Create initial physical plan

2. Query Stage Materialization
 ├─ Execute until shuffle boundary
 ├─ Collect actual runtime statistics:
 │ • Partition sizes
 │ • Row counts
 │ • Data distribution
 └─ Store intermediate results

3. Re-optimization
 ├─ Update statistics with actual values
 ├─ Re-analyze downstream plan
 ├─ Apply AQE optimizations:
 │ • Coalesce small partitions
 │ • Switch join strategies
 │ • Split skewed partitions
 └─ Generate optimized plan

4. Continue Execution
 ├─ Execute next query stage
 └─ Repeat re-optimization at each shuffle
3. Core AQE Features
3.1 Dynamic Partition Coalescing
Problem Solved:
┌───┐
│ Small Partition Problem │
└───┘

After shuffle with 200 partitions (default):

Without AQE:
┌────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬─────┐
│5MB │2MB │1MB │3MB │8MB │1MB │2MB │4MB │1MB │2MB │ ... │
└────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴─────┘
200 tasks, most processing tiny partitions
High scheduling overhead, poor CPU utilization

With AQE Coalescing:
┌───────────────┬───────────────┬───────────────┬──────────────┐
│ 64MB │ 64MB │ 64MB │ ~48MB │
│ (combined) │ (combined) │ (combined) │ (remaining) │
└───────────────┴───────────────┴───────────────┴──────────────┘
4 tasks, each processing reasonable data
Lower overhead, better CPU utilization
3.2 Dynamic Join Strategy Selection
Runtime Strategy Switching:
┌───┐
│ Dynamic Join Strategy Selection │
└───┘

Initial Plan (based on estimates):
───
Estimated sizes: Table A = 500MB, Table B = 50MB
Selected strategy: Sort-Merge Join (both too big for broadcast)

After Stage 1 Execution:
───
Actual sizes: Table A = 500MB, Table B = 8MB (after filtering!)
Runtime decision: Switch to Broadcast Hash Join

Result:
├─ Original plan: 2 shuffles (both tables)
├─ Optimized plan: 0 shuffles (broadcast Table B)
└─ Performance: 5x faster!
3.3 Skew Join Optimization
Automatic Skew Handling:
┌───┐
│ AQE Skew Join Optimization │
└───┘

Problem: Skewed partition in join

Table A partitions after shuffle:
[50MB] [52MB] [48MB] [800MB] [51MB] ← Partition 3 is skewed!

Without AQE:
├─ Task 3 takes 10x longer than others
├─ Job completion time dominated by one task
└─ Total time: 10 minutes

With AQE Skew Handling:

1. Detect skew: Partition 3 (800MB) >> median (50MB)

2. Split skewed partition:
 [50MB] [52MB] [48MB] [100MB][100MB][100MB][100MB][100MB][100MB][100MB][100MB] [51MB]
 └──────────── Partition 3 split into 8 ──────────────┘

3. Replicate matching data from other table

Result:
├─ 12 balanced tasks instead of 5 imbalanced
├─ All tasks complete in similar time
└─ Total time: 2 minutes (5x improvement!)
4. Enabling and Configuring AQE
4.1 Basic Configuration
Enabling AQE:
SparkSession configuration
spark = SparkSession.builder \
 .appName("AQE Enabled App") \
 .config("spark.sql.adaptive.enabled", "true") \
 .getOrCreate()

Or set at runtime
spark.conf.set("spark.sql.adaptive.enabled", "true")

Verify AQE is enabled
print(spark.conf.get("spark.sql.adaptive.enabled"))
Minimum Configuration:
Essential AQE settings
spark.conf.set("spark.sql.adaptive.enabled", "true")
spark.conf.set("spark.sql.adaptive.coalescePartitions.enabled", "true")
spark.conf.set("spark.sql.adaptive.skewJoin.enabled", "true")
4.2 Feature-Specific Settings
Complete AQE Configuration:
Master switch
spark.conf.set("spark.sql.adaptive.enabled", "true")

Partition coalescing
spark.conf.set("spark.sql.adaptive.coalescePartitions.enabled", "true")
spark.conf.set("spark.sql.adaptive.coalescePartitions.minPartitionSize", "1MB")
spark.conf.set("spark.sql.adaptive.advisoryPartitionSizeInBytes", "64MB")

Skew join
spark.conf.set("spark.sql.adaptive.skewJoin.enabled", "true")
spark.conf.set("spark.sql.adaptive.skewJoin.skewedPartitionFactor", "5")
spark.conf.set("spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes", "256MB")

Local shuffle reader
spark.conf.set("spark.sql.adaptive.localShuffleReader.enabled", "true")

Dynamic join
spark.conf.set("spark.sql.adaptive.autoBroadcastJoinThreshold", "10MB")
4.3 Version Differences
Configuration by Spark Version:
	Parameter
	Spark 3.0
	Spark 3.2+

	`spark.sql.adaptive.enabled`
	false
	true

	`spark.sql.adaptive.coalescePartitions.enabled`
	true
	true

	`spark.sql.adaptive.coalescePartitions.minPartitionNum`
	Deprecated
	Removed

	`spark.sql.adaptive.coalescePartitions.minPartitionSize`
	N/A
	1MB

	`spark.sql.adaptive.advisoryPartitionSizeInBytes`
	64MB
	64MB

5. Dynamic Partition Coalescing
5.1 How Coalescing Works
Coalescing Algorithm:
┌───┐
│ Partition Coalescing Algorithm │
└───┘

Input: 200 shuffle partitions with varying sizes

Step 1: Collect partition sizes after shuffle write
┌──┐
│ Partition sizes (MB): [5, 2, 1, 8, 3, 12, 2, 4, 1, 7, ...] │
└──┘

Step 2: Calculate target partition count
 target_partitions = total_data_size / advisory_partition_size
 Example: 2GB total / 64MB target = 32 partitions

Step 3: Greedily combine adjacent partitions
 Partition 0: [5+2+1+8+3+12+2+4+1+7+...] until >= 64MB
 Partition 1: [next partitions...] until >= 64MB
 ...

Step 4: Ensure minimum partition size
 If combined size < minPartitionSize, merge with neighbor

Result: 32 balanced partitions instead of 200 small ones
5.2 Configuration Parameters
Coalescing Parameters:
	Parameter
	Default
	Description

	`spark.sql.adaptive.coalescePartitions.enabled`
	true
	Enable coalescing

	`spark.sql.adaptive.coalescePartitions.parallelismFirst`
	true
	Prioritize parallelism

	`spark.sql.adaptive.coalescePartitions.minPartitionSize`
	1MB
	Minimum partition size

	`spark.sql.adaptive.advisoryPartitionSizeInBytes`
	64MB
	Target partition size

5.3 Tuning Guidelines
Coalescing Tuning:
For small clusters (fewer cores)
Larger partitions = fewer tasks = less overhead
spark.conf.set("spark.sql.adaptive.advisoryPartitionSizeInBytes", "128MB")

For large clusters (many cores)
Smaller partitions = more parallelism
spark.conf.set("spark.sql.adaptive.advisoryPartitionSizeInBytes", "64MB")

For memory-constrained executors
Smaller partitions = less memory per task
spark.conf.set("spark.sql.adaptive.advisoryPartitionSizeInBytes", "32MB")

Minimum partition to avoid tiny tasks
spark.conf.set("spark.sql.adaptive.coalescePartitions.minPartitionSize", "4MB")
Decision Matrix:
	Cluster Size
	Memory/Executor
	Advisory Size
	Min Size

	Small (< 50 cores)
	16GB
	128MB
	8MB

	Medium (50-200 cores)
	16GB
	64MB
	4MB

	Large (> 200 cores)
	32GB+
	64MB
	4MB

	Memory-limited
	8GB
	32MB
	2MB

5.4 Examples and Benchmarks
Before and After Comparison:
┌───┐
│ Coalescing Performance Impact │
└───┘

Scenario: Aggregation query on filtered data
 Input: 100GB raw data
 After filter: 5GB remaining
 spark.sql.shuffle.partitions: 200

Without Coalescing:
 ├─ Shuffle partitions: 200
 ├─ Average partition size: 25MB
 ├─ Many partitions < 1MB
 ├─ Tasks: 200
 ├─ Time: 45 seconds

With Coalescing (64MB target):
 ├─ Coalesced partitions: 78
 ├─ Average partition size: 64MB
 ├─ All partitions > 4MB
 ├─ Tasks: 78
 ├─ Time: 28 seconds

Improvement: 38% faster, 61% fewer tasks
6. Dynamic Join Strategy Selection
6.1 Runtime Statistics Collection
Statistics Collection:
┌───┐
│ Runtime Statistics Collection │
└───┘

Query: SELECT * FROM large JOIN small ON large.key = small.key
WHERE small.date > '2024-01-01'

Planning Phase:
├─ large table: 500GB (from catalog)
├─ small table: 100GB (from catalog)
├─ After filter estimate: 50GB (optimizer guess)
└─ Plan: Sort-Merge Join (both sides too large for broadcast)

Stage 1 Execution (scan + filter on small):
├─ Actual filtered size: 8MB (much smaller than estimate!)
└─ Statistics sent to driver

Re-optimization:
├─ Actual small table size: 8MB < broadcast threshold (10MB)
└─ New Plan: Broadcast Hash Join

Stage 2 Execution:
├─ Broadcast small table (8MB)
├─ No shuffle for large table
└─ Much faster execution!
6.2 Join Strategy Switching
Join Strategy Decision:
┌───┐
│ Join Strategy Switching Logic │
└───┘

After shuffle read, check actual sizes:

if (right_side_size < autoBroadcastJoinThreshold):
 Switch to: BroadcastHashJoin (broadcast right)

elif (left_side_size < autoBroadcastJoinThreshold):
 Switch to: BroadcastHashJoin (broadcast left)

else:
 Keep: Original plan (SortMergeJoin or ShuffleHashJoin)

Example:
 autoBroadcastJoinThreshold = 10MB

 Scenario 1: Right side = 8MB → Broadcast Right
 Scenario 2: Right side = 50MB, Left side = 5MB → Broadcast Left
 Scenario 3: Both sides > 10MB → Keep SortMergeJoin
6.3 Configuration Parameters
Dynamic Join Configuration:
Broadcast threshold for AQE
This is SEPARATE from spark.sql.autoBroadcastJoinThreshold
spark.conf.set("spark.sql.adaptive.autoBroadcastJoinThreshold", "10MB")

Compare with static threshold:
spark.sql.autoBroadcastJoinThreshold = 10MB (planning time)
spark.sql.adaptive.autoBroadcastJoinThreshold = 10MB (runtime)

To allow larger runtime broadcasts
spark.conf.set("spark.sql.adaptive.autoBroadcastJoinThreshold", "50MB")
6.4 Best Practices
Join Optimization Best Practices:
1. Set appropriate broadcast threshold
Allow larger broadcasts at runtime (actual size known)
spark.conf.set("spark.sql.adaptive.autoBroadcastJoinThreshold", "50MB")

2. Don't disable AQE for joins
Even if you have statistics, runtime can be different

3. Monitor join strategy changes
df.explain(mode="extended")
Look for: "AdaptiveSparkPlan" and "BroadcastHashJoin"

4. Use hints when you KNOW the best strategy
from pyspark.sql.functions import broadcast
result = large_df.join(broadcast(small_df), "key")
Hint overrides AQE decision
7. Skew Join Optimization
7.1 Skew Detection Mechanism
Skew Detection Algorithm:
┌───┐
│ Skew Detection Algorithm │
└───┘

After shuffle write, collect partition statistics:

Partition sizes: [50MB, 52MB, 48MB, 800MB, 51MB, 49MB, ...]

Calculate median partition size:
 median = 50MB

Skew detection for each partition:
 is_skewed = (size > skewedPartitionThresholdInBytes) AND
 (size > median * skewedPartitionFactor)

With default settings:
 skewedPartitionThresholdInBytes = 256MB
 skewedPartitionFactor = 5

Partition 3 (800MB):
 800MB > 256MB? YES
 800MB > 50MB * 5 (250MB)? YES
 → SKEWED!

Other partitions (50MB):
 50MB > 256MB? NO
 → NOT SKEWED
7.2 Skew Handling Strategy
Skew Join Handling:
┌───┐
│ Skew Join Handling Strategy │
└───┘

Original Plan:
 Table A (skewed) JOIN Table B ON A.key = B.key

 Table A partitions: [50MB] [52MB] [800MB] [51MB]
 Table B partitions: [20MB] [22MB] [120MB] [21MB]

Step 1: Identify skewed partitions
 A.partition[2] = 800MB → SKEWED
 B.partition[2] = 120MB → Corresponding partition

Step 2: Split skewed partition
 A.partition[2] split into 8 sub-partitions:
 [100MB] [100MB] [100MB] [100MB] [100MB] [100MB] [100MB] [100MB]

Step 3: Replicate corresponding partition
 B.partition[2] replicated 8 times for joining with each split

Step 4: Execute parallel joins
 ┌─────────────┬───┐
 │ A.part[0] │ JOIN B.part[0] │
 │ A.part[1] │ JOIN B.part[1] │
 │ A.part[2].s0│ JOIN B.part[2] (replica 1) │
 │ A.part[2].s1│ JOIN B.part[2] (replica 2) │
 │ ... │ ... │
 │ A.part[2].s7│ JOIN B.part[2] (replica 8) │
 │ A.part[3] │ JOIN B.part[3] │
 └─────────────┴───┘

Result: Balanced execution, no stragglers!
7.3 Configuration Parameters
Skew Join Configuration:
	Parameter
	Default
	Description

	`spark.sql.adaptive.skewJoin.enabled`
	true
	Enable skew handling

	`spark.sql.adaptive.skewJoin.skewedPartitionFactor`
	5
	Multiplier for median

	`spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes`
	256MB
	Minimum size for skew

Configuration Examples:
Default configuration (moderate skew detection)
spark.conf.set("spark.sql.adaptive.skewJoin.enabled", "true")
spark.conf.set("spark.sql.adaptive.skewJoin.skewedPartitionFactor", "5")
spark.conf.set("spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes", "256MB")

Aggressive skew detection (catch more skew)
spark.conf.set("spark.sql.adaptive.skewJoin.skewedPartitionFactor", "3")
spark.conf.set("spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes", "128MB")

Conservative skew detection (only severe skew)
spark.conf.set("spark.sql.adaptive.skewJoin.skewedPartitionFactor", "10")
spark.conf.set("spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes", "512MB")
7.4 Tuning for Different Scenarios
Skew Tuning Guidelines:
	Scenario
	Factor
	Threshold
	Rationale

	Unknown data
	5
	256MB
	Balanced defaults

	Known heavy skew
	3
	128MB
	Catch more skew

	Slight skew
	10
	512MB
	Avoid over-splitting

	Large partitions
	5
	512MB
	Match partition size

	Memory-limited
	3
	128MB
	Smaller splits

Tuning Workflow:
1. Start with defaults
spark.conf.set("spark.sql.adaptive.skewJoin.enabled", "true")

2. Monitor join performance in Spark UI
Look for: Task duration variance

3. If severe skew still visible:
Reduce threshold and factor
spark.conf.set("spark.sql.adaptive.skewJoin.skewedPartitionFactor", "3")
spark.conf.set("spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes", "128MB")

4. If too many splits (overhead):
Increase threshold and factor
spark.conf.set("spark.sql.adaptive.skewJoin.skewedPartitionFactor", "10")
8. Local Shuffle Reader
8.1 How It Works
Local Shuffle Reader:
┌───┐
│ Local Shuffle Reader Optimization │
└───┘

Scenario: Shuffle followed by operation that doesn't need partitioning

Without Local Shuffle Reader:
 Stage 1: Shuffle write (hash partitioned)
 Stage 2: Shuffle read (fetch from remote)
 → Each reducer fetches from all mappers
 → Network I/O

With Local Shuffle Reader:
 Stage 1: Shuffle write (hash partitioned)
 Stage 2: Local read (no network)
 → Each reader reads local shuffle files
 → No network I/O (if data locality allows)

Applicable when:
• Downstream operation doesn't need specific partitioning
• Data can be read locally
• Partition coalescing is applied
8.2 Configuration
Enable local shuffle reader (default: true)
spark.conf.set("spark.sql.adaptive.localShuffleReader.enabled", "true")

Conditions for local shuffle reader:
1. AQE must be enabled
2. Partition coalescing must be applied
3. Downstream doesn't require hash partitioning
8.3 When to Disable
Disable Local Shuffle Reader:
Disable if you need exact partition distribution
(rare, but can happen with bucketed outputs)
spark.conf.set("spark.sql.adaptive.localShuffleReader.enabled", "false")

Scenarios to disable:
1. Writing to bucketed table
2. Downstream requires specific partitioning
3. Debugging partition-related issues
9. AQE and Query Planning
9.1 Query Stage Boundaries
Query Stage Concept:
┌───┐
│ Query Stages in AQE │
└───┘

Query: SELECT a.*, b.value
 FROM table_a a
 JOIN table_b b ON a.key = b.key
 WHERE a.status = 'active'
 GROUP BY a.category

Query Stages:

Stage 1: Scan + Filter table_a
 ├─ Scan parquet
 ├─ Filter (status = 'active')
 └─ Shuffle write (by key)
 ▼
 ═══ STAGE BOUNDARY ═══
 [Collect statistics, re-optimize]
 ▼
Stage 2: Scan table_b
 ├─ Scan parquet
 └─ Shuffle write (by key)
 ▼
 ═══ STAGE BOUNDARY ═══
 [Collect statistics, re-optimize]
 ▼
Stage 3: Join
 ├─ Shuffle read (both sides)
 ├─ Join
 └─ Shuffle write (by category)
 ▼
 ═══ STAGE BOUNDARY ═══
 [Collect statistics, re-optimize]
 ▼
Stage 4: Aggregate
 ├─ Shuffle read
 └─ Final aggregation
9.2 Re-optimization Points
When Re-optimization Occurs:
	Point
	What Happens
	Optimizations Applied

	After shuffle write
	Actual sizes known
	Coalescing, join switch

	Before join
	Both sides known
	Skew detection

	After filter
	Selectivity known
	Join strategy update

9.3 Statistics Propagation
Statistics Flow:
Statistics collected at each stage:
- Row count
- Data size
- Partition sizes
- Column statistics (in some cases)

View statistics in plan
df.explain(mode="cost")

Example output:
"""
== Optimized Logical Plan ==
Aggregate [category], [category, sum(amount)]
+- Filter (status = active)
 +- Relation[...]

Statistics: sizeInBytes=1.5 GB, rowCount=10000000
"""
10. Monitoring AQE
10.1 Spark UI Indicators
AQE in Spark UI:
┌───┐
│ AQE Indicators in Spark UI │
└───┘

SQL Tab - Query Details:

Physical Plan:
┌───┐
│ AdaptiveSparkPlan isFinalPlan=true │ ← AQE active
│ +- == Final Plan == │
│ ├─ BroadcastHashJoin │ ← Switched at runtime
│ │ ├─ ... │
│ │ └─ BroadcastExchange │
│ └─ AQEShuffleRead coalesced │ ← Coalescing applied
│ └─ ShuffleQueryStage 0 │ ← Query stage
└───┘

Key Indicators:
• "AdaptiveSparkPlan" = AQE is being used
• "isFinalPlan=true" = Plan has been optimized
• "AQEShuffleRead coalesced" = Partitions were coalesced
• "BroadcastExchange" (not in original) = Join strategy changed
10.2 Plan Analysis
Analyzing AQE Plans:
View AQE plan
df.explain(mode="extended")

Look for:
1. AdaptiveSparkPlan wrapper
2. isFinalPlan=false (during planning) vs true (after optimization)
3. coalesced keyword in shuffle reads
4. Split partitions for skew joins

Compare plans
df.explain(mode="formatted")

Example output showing AQE optimization:
"""
== Physical Plan ==
AdaptiveSparkPlan isFinalPlan=true
+- == Final Plan ==
 *(3) HashAggregate(keys=[category], functions=[sum(amount)])
 +- AQEShuffleRead coalesced ← Coalesced!
 +- ShuffleQueryStage 1
 +- Exchange hashpartitioning(category, 200)
 +- *(2) HashAggregate(keys=[category], functions=[partial_sum(amount)])
 +- *(2) BroadcastHashJoin ← Changed from SortMergeJoin!
 +- ...
"""
10.3 Performance Metrics
Key Metrics to Monitor:
Metrics to check in Spark UI:

1. Number of tasks per stage
Before AQE: 200 tasks (spark.sql.shuffle.partitions)
After AQE: 50 tasks (coalesced)

2. Task duration variance
Before: Min=1s, Max=120s (skew)
After: Min=8s, Max=15s (balanced)

3. Shuffle read size vs write size
Significant reduction = coalescing effective

4. Join strategy in plan
BroadcastHashJoin = AQE optimized (if not originally planned)
11. Configuration Templates
11.1 General Purpose
General purpose AQE configuration
aqe_general = {
 "spark.sql.adaptive.enabled": "true",
 "spark.sql.adaptive.coalescePartitions.enabled": "true",
 "spark.sql.adaptive.coalescePartitions.minPartitionSize": "4MB",
 "spark.sql.adaptive.advisoryPartitionSizeInBytes": "64MB",
 "spark.sql.adaptive.skewJoin.enabled": "true",
 "spark.sql.adaptive.skewJoin.skewedPartitionFactor": "5",
 "spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes": "256MB",
 "spark.sql.adaptive.localShuffleReader.enabled": "true",
 "spark.sql.adaptive.autoBroadcastJoinThreshold": "10MB"
}

for key, value in aqe_general.items():
 spark.conf.set(key, value)
11.2 ETL Workloads
ETL-optimized AQE configuration
aqe_etl = {
 "spark.sql.adaptive.enabled": "true",
 "spark.sql.adaptive.coalescePartitions.enabled": "true",
 "spark.sql.adaptive.coalescePartitions.minPartitionSize": "8MB",
 "spark.sql.adaptive.advisoryPartitionSizeInBytes": "128MB", # Larger for batch
 "spark.sql.adaptive.skewJoin.enabled": "true",
 "spark.sql.adaptive.skewJoin.skewedPartitionFactor": "3", # More aggressive
 "spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes": "128MB",
 "spark.sql.adaptive.autoBroadcastJoinThreshold": "50MB" # Larger broadcasts OK
}
11.3 Interactive Analytics
Interactive query AQE configuration
aqe_interactive = {
 "spark.sql.adaptive.enabled": "true",
 "spark.sql.adaptive.coalescePartitions.enabled": "true",
 "spark.sql.adaptive.coalescePartitions.minPartitionSize": "1MB",
 "spark.sql.adaptive.advisoryPartitionSizeInBytes": "32MB", # Faster response
 "spark.sql.adaptive.skewJoin.enabled": "true",
 "spark.sql.adaptive.skewJoin.skewedPartitionFactor": "5",
 "spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes": "64MB",
 "spark.sql.adaptive.autoBroadcastJoinThreshold": "100MB" # More broadcasts
}
11.4 Skew-Heavy Workloads
Skew-heavy workload AQE configuration
aqe_skew_heavy = {
 "spark.sql.adaptive.enabled": "true",
 "spark.sql.adaptive.coalescePartitions.enabled": "true",
 "spark.sql.adaptive.advisoryPartitionSizeInBytes": "64MB",
 "spark.sql.adaptive.skewJoin.enabled": "true",
 "spark.sql.adaptive.skewJoin.skewedPartitionFactor": "2", # Very aggressive
 "spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes": "64MB", # Low threshold
 "spark.sql.adaptive.autoBroadcastJoinThreshold": "10MB"
}
12. Troubleshooting AQE
12.1 Common Issues
Issue 1: AQE Not Activating
Problem: Plan shows no "AdaptiveSparkPlan"

Check 1: Is AQE enabled?
print(spark.conf.get("spark.sql.adaptive.enabled"))

Check 2: Are there exchanges (shuffles)?
df.explain()
AQE only activates for queries with shuffles

Check 3: Is query too simple?
Single-stage queries don't benefit from AQE
Issue 2: Coalescing Not Working
Problem: Still seeing 200 partitions after shuffle

Check 1: Is coalescing enabled?
print(spark.conf.get("spark.sql.adaptive.coalescePartitions.enabled"))

Check 2: Are partitions already large?
If partitions > advisoryPartitionSizeInBytes, no coalescing needed

Check 3: Check advisory size
print(spark.conf.get("spark.sql.adaptive.advisoryPartitionSizeInBytes"))
Issue 3: Skew Join Not Triggering
Problem: Skewed partition not being split

Check 1: Is skew join enabled?
print(spark.conf.get("spark.sql.adaptive.skewJoin.enabled"))

Check 2: Check thresholds
factor = spark.conf.get("spark.sql.adaptive.skewJoin.skewedPartitionFactor")
threshold = spark.conf.get("spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes")

Check 3: Is partition actually skewed by these criteria?
size > threshold AND size > median * factor
12.2 Debugging Techniques
Debug AQE Behavior:
Enable AQE debug logging
spark.sparkContext.setLogLevel("DEBUG")

Look for log entries:
"Adaptive execution" - AQE decisions
"Coalescing partitions" - Coalescing actions
"Skew join" - Skew detection

Examine plans at different stages
df.queryExecution.executedPlan # Final plan
df.queryExecution.sparkPlan # Pre-AQE plan
12.3 Performance Regressions
When AQE Causes Slowdown:
Rare cases where AQE can hurt performance:

1. Over-coalescing (too few partitions)
Solution: Reduce advisory partition size
spark.conf.set("spark.sql.adaptive.advisoryPartitionSizeInBytes", "32MB")

2. Wrong join strategy switch
Solution: Use hints to force strategy
from pyspark.sql.functions import broadcast
result = df1.join(broadcast(df2), "key")

3. Overhead for small queries
Solution: For very small data, AQE overhead may not be worth it
Consider disabling for sub-second queries
13. AQE Limitations
13.1 Known Limitations
AQE Limitations:
	Limitation
	Description
	Workaround

	No RDD support
	Only DataFrame/SQL
	Use DataFrame API

	Stage boundaries required
	Needs shuffles
	Accept for single-stage

	Not for streaming
	Limited support
	Use static batch hints

	Planning overhead
	Small queries slower
	Disable for tiny data

	Bucket join conflicts
	May disable bucket join
	Disable local shuffle reader

13.2 Workarounds
Workaround 1: Force specific behavior with hints
df.hint("broadcast") # Force broadcast
df.hint("merge") # Force sort-merge join

Workaround 2: Disable specific features
spark.conf.set("spark.sql.adaptive.skewJoin.enabled", "false") # If causing issues

Workaround 3: For bucketed tables
spark.conf.set("spark.sql.adaptive.localShuffleReader.enabled", "false")
14. Advanced Topics
14.1 Custom Shuffle Partitioning
AQE respects repartition hints
df.repartition(100, "key") # Explicit partitioning preserved

But coalescing can still reduce
To prevent: increase minimum partition size
spark.conf.set("spark.sql.adaptive.coalescePartitions.minPartitionSize", "64MB")
14.2 AQE with Bucketing
AQE and bucketing interaction
Note: Local shuffle reader can break bucket joins

For bucket joins, consider:
spark.conf.set("spark.sql.adaptive.localShuffleReader.enabled", "false")

Verify bucket join is used
df1 = spark.table("bucketed_table1")
df2 = spark.table("bucketed_table2")
result = df1.join(df2, "key")
result.explain()
Should show SortMergeJoin without Exchange
14.3 AQE in Streaming
Structured Streaming has limited AQE support
Most AQE features work within micro-batches

For streaming:
spark.conf.set("spark.sql.adaptive.enabled", "true")
Coalescing works per micro-batch
Skew handling works per micro-batch
15. Configuration Reference
Complete AQE Configuration:
	Parameter
	Default
	Range
	Description

	`spark.sql.adaptive.enabled`
	true (3.2+)
	boolean
	Master switch

	`spark.sql.adaptive.coalescePartitions.enabled`
	true
	boolean
	Enable coalescing

	`spark.sql.adaptive.coalescePartitions.minPartitionSize`
	1MB
	bytes
	Minimum partition

	`spark.sql.adaptive.advisoryPartitionSizeInBytes`
	64MB
	bytes
	Target partition

	`spark.sql.adaptive.skewJoin.enabled`
	true
	boolean
	Enable skew handling

	`spark.sql.adaptive.skewJoin.skewedPartitionFactor`
	5
	number
	Skew multiplier

	`spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes`
	256MB
	bytes
	Skew threshold

	`spark.sql.adaptive.localShuffleReader.enabled`
	true
	boolean
	Local reader

	`spark.sql.adaptive.autoBroadcastJoinThreshold`
	10MB
	bytes
	Runtime broadcast

16. Quick Reference
AQE Quick Start:
Enable AQE with recommended settings
spark.conf.set("spark.sql.adaptive.enabled", "true")
spark.conf.set("spark.sql.adaptive.coalescePartitions.enabled", "true")
spark.conf.set("spark.sql.adaptive.skewJoin.enabled", "true")
When to Tune:
	Symptom
	Action

	Too many small tasks
	Increase advisoryPartitionSizeInBytes

	Straggler tasks
	Decrease skewedPartitionFactor

	Memory issues
	Decrease advisoryPartitionSizeInBytes

	Join not broadcast
	Increase autoBroadcastJoinThreshold

Verification:
Check AQE is active
df.explain() # Look for "AdaptiveSparkPlan"

Check coalescing
Look for "AQEShuffleRead coalesced"

Check skew handling
Look for "skew" in plan or split partitions
Document Information
	Attribute
	Value

	Document ID
	MTD-SPARK-AQE-001

	Version
	1.0

	Status
	Final

	Classification
	Internal

	Owner
	Data Engineering Practice

	Last Updated
	January 2026

This document is proprietary to Mastech Digital and intended for internal use and client delivery.
image1.png
#MAST=CH
DIGITAL

