Proprietary to Mastech Digital. All rights reserved.		 [image:]
[image:]

Technical Architecture Document

PySpark Architecture
Deep Dive

Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice

Table of Contents
1. Executive Summary	4
2. Introduction to Apache Spark	4
2.1 Evolution of Distributed Computing	4
2.2 The Spark Ecosystem	4
2.3 PySpark: Python API for Spark	5
3. Spark Cluster Architecture	6
3.1 Driver Program	6
3.2 Cluster Manager	7
3.3 Worker Nodes and Executors	8
3.4 Cluster Deployment Modes	9
4. Spark Application Lifecycle	9
4.1 Application Submission	9
4.2 Resource Allocation	10
4.3 Task Execution	11
4.4 Application Termination	12
5. Execution Model Deep Dive	12
5.1 Jobs, Stages, and Tasks	12
5.2 Task Scheduling	13
5.3 Speculative Execution	14
6. DAG Scheduler Architecture	15
6.1 DAG Construction	15
6.2 Stage Boundary Determination	16
6.3 Task Set Generation	17
6.4 DAG Visualization	17
7. Transformations: Narrow vs Wide	18
7.1 Narrow Transformations	18
7.2 Wide Transformations	19
7.3 Performance Implications	20
8. Shuffle Architecture	20
8.1 Shuffle Write Phase	20
8.2 Shuffle Read Phase	21
8.3 Shuffle Managers	22
8.4 Shuffle Optimization Techniques	23
9. Catalyst Optimizer	23
9.1 Query Planning Pipeline	23
9.2 Logical Plan Optimization	24
9.3 Physical Plan Selection	25
9.4 Code Generation	26
10. Tungsten Execution Engine	27
10.1 Memory Management	27
10.2 Binary Processing	27
10.3 Cache-Aware Computation	28
10.4 Whole-Stage Code Generation	29
11. Memory Management Architecture	29
11.1 Unified Memory Model	29
11.2 Storage Memory	30
11.3 Execution Memory	31
11.4 Memory Tuning	32
12. Data Partitioning Strategies	32
12.1 Hash Partitioning	32
12.2 Range Partitioning	33
12.3 Custom Partitioning	34
13. Adaptive Query Execution (AQE)	35
13.1 Runtime Re-optimization	35
13.2 Dynamic Partition Coalescing	36
13.3 Skew Join Optimization	36
14. Design Implications and Best Practices	38
14.1 Architecture-Aware Development	38
14.2 Performance Anti-Patterns	39
14.3 Production Considerations	40
15. Related Documentation	41
16. Glossary	42
17. References	42

[bookmark: _Toc220524894]1. Executive Summary
Apache Spark has established itself as the de facto standard for large-scale distributed data processing, powering analytics workloads across industries. Understanding Spark's internal architecture is essential for data engineers and architects to design efficient data pipelines, troubleshoot performance issues, and optimize resource utilization.
This document provides a comprehensive technical deep dive into PySpark's architecture, covering the distributed computing model, execution engine internals, and optimization strategies. Key areas explored include:
Cluster Architecture: Understanding the roles of Driver, Executors, and Cluster Managers in distributed processing
Execution Model: How Spark transforms code into distributed tasks through Jobs, Stages, and Tasks
DAG Scheduler: The intelligent scheduling system that optimizes execution plans
Catalyst Optimizer: SQL query optimization through rule-based and cost-based optimization
Tungsten Engine: Low-level execution improvements for memory management and CPU efficiency
Shuffle Operations: The most expensive distributed operation and strategies to minimize its impact
This knowledge enables practitioners to write more efficient Spark applications, make informed decisions about cluster sizing and configuration, and effectively debug production issues.
Target Audience: Data Engineers, Data Architects, Platform Engineers, and Technical Leads working with Apache Spark and PySpark.
[bookmark: _Toc220524895]2. Introduction to Apache Spark
[bookmark: _Toc220524896]2.1 Evolution of Distributed Computing
Apache Spark emerged in 2009 at UC Berkeley's AMPLab as a response to the limitations of MapReduce, the dominant distributed computing paradigm at the time. While MapReduce revolutionized big data processing, its disk-based execution model created significant overhead for iterative algorithms and interactive analysis.
Spark introduced the concept of Resilient Distributed Datasets (RDDs), enabling in-memory computation that delivered 10-100x performance improvements for many workloads. This breakthrough, combined with a more expressive API, drove rapid adoption across the industry.
[bookmark: _Toc220524897]2.2 The Spark Ecosystem
Modern Spark provides a unified analytics engine encompassing multiple processing paradigms:
	Component
	Purpose
	Key Features

	Spark Core
	Foundation layer
	RDD API, task scheduling, memory management

	Spark SQL
	Structured data processing
	DataFrames, Datasets, SQL interface, Catalyst optimizer

	Spark Streaming
	Real-time processing
	DStreams, micro-batch processing

	Structured Streaming
	Stream processing
	Exactly-once semantics, event-time processing

	MLlib
	Machine learning
	Distributed algorithms, pipelines, model persistence

	GraphX
	Graph processing
	Graph algorithms, Pregel API

[bookmark: _Toc220524898]2.3 PySpark: Python API for Spark
PySpark provides Python bindings for Apache Spark, enabling Python developers to leverage Spark's distributed computing capabilities. The architecture involves:
┌───┐
│ Python Driver Program │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────────┐ │
│ │ PySpark │◄──►│ Py4J │◄──►│ JVM Driver │ │
│ │ API │ │ Gateway │ │ (SparkContext)│ │
│ └─────────────┘ └─────────────┘ └─────────────────┘ │
└───┘
 │
 ▼
┌───┐
│ Executor (JVM) │
│ ┌───┐│
│ │ Spark Tasks ││
│ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ││
│ │ │ JVM Task │ │ Python UDF │ │ JVM Task │ ││
│ │ │ (DataFrame) │ │ (Worker) │ │ (DataFrame) │ ││
│ │ └─────────────┘ └──────┬──────┘ └─────────────┘ ││
│ │ │ ││
│ │ ┌──────▼──────┐ ││
│ │ │ Python │ ││
│ │ │ Worker │ ││
│ │ │ Process │ ││
│ │ └─────────────┘ ││
│ └───┘│
└───┘
Key Architectural Points:
PySpark operations on DataFrames execute entirely in the JVM, benefiting from Catalyst and Tungsten optimizations
Python UDFs require serialization between JVM and Python processes, creating overhead
Arrow-based optimizations (Pandas UDFs) minimize serialization costs for vectorized operations
[bookmark: _Toc220524899]3. Spark Cluster Architecture
[bookmark: _Toc220524900]3.1 Driver Program
The Driver is the orchestrator of a Spark application, responsible for:
Core Responsibilities:
SparkContext Initialization: Creates the entry point for Spark functionality
Application Logic Execution: Runs the main() function and constructs the computation graph
DAG Creation: Translates transformations into a Directed Acyclic Graph
Task Scheduling: Distributes tasks to executors through the DAG Scheduler and Task Scheduler
Result Collection: Gathers results from executors for actions like collect() or count()
Driver Architecture Components:
┌──┐
│ DRIVER PROGRAM │
├──┤
│ │
│ ┌──────────────────┐ ┌──────────────────────────────────┐ │
│ │ SparkContext │───►│ DAG Scheduler │ │
│ │ │ │ • Builds stages from RDD graph │ │
│ │ • Entry point │ │ • Determines stage boundaries │ │
│ │ • Configuration │ │ • Tracks stage dependencies │ │
│ │ • Accumulator │ └──────────────┬───────────────────┘ │
│ │ tracking │ │ │
│ └──────────────────┘ ▼ │
│ ┌──────────────────────────────────┐ │
│ ┌──────────────────┐ │ Task Scheduler │ │
│ │ Block Manager │ │ • Assigns tasks to executors │ │
│ │ Master │ │ • Handles task failures │ │
│ │ │ │ • Manages speculation │ │
│ │ • Tracks block │ └──────────────┬───────────────────┘ │
│ │ locations │ │ │
│ │ • Coordinates │ ▼ │
│ │ replication │ ┌──────────────────────────────────┐ │
│ └──────────────────┘ │ Scheduler Backend │ │
│ │ • Communicates with cluster │ │
│ │ manager │ │
│ │ • Launches executors │ │
│ └──────────────────────────────────┘ │
└──┘
Driver Memory Considerations:
Driver memory (spark.driver.memory) should accommodate:
Collected results from actions
Broadcast variables
Application metadata and DAG information
Default: 1GB; production workloads often require 2-8GB
spark.driver.maxResultSize limits data returned to driver (default: 1GB)
[bookmark: _Toc220524901]3.2 Cluster Manager
The Cluster Manager is responsible for resource allocation and management across the cluster. Spark supports multiple cluster managers:
	Cluster Manager
	Use Case
	Key Characteristics

	Standalone
	Development, small clusters
	Built-in, simple setup, basic scheduling

	YARN
	Hadoop ecosystems
	Enterprise features, resource sharing, queue management

	Kubernetes
	Cloud-native deployments
	Container orchestration, auto-scaling, isolation

	Mesos
	Multi-framework clusters
	Fine-grained sharing, framework isolation

Resource Allocation Flow:
┌──────────────┐ ┌──────────────────┐ ┌──────────────┐
│ Driver │────────►│ Cluster Manager │────────►│ Workers │
│ │ │ │ │ │
│ Request: │ │ • Validates │ │ • Launch │
│ • Executors │ │ resources │ │ executor │
│ • Cores │ │ • Allocates │ │ JVMs │
│ • Memory │ │ containers │ │ • Report │
│ │ │ • Monitors │ │ status │
│ │ │ health │ │ │
└──────────────┘ └──────────────────┘ └──────────────┘
YARN-Specific Architecture:
┌───┐
│ YARN Resource Manager │
├───┤
│ ┌───────────────────┐ ┌─────────────────────────────────┐ │
│ │ Scheduler │ │ Application Manager │ │
│ │ │ │ │ │
│ │ • Capacity │ │ • Accepts submissions │ │
│ │ • Fair │ │ • Negotiates first container │ │
│ │ • FIFO │ │ • Restarts AM on failure │ │
│ └───────────────────┘ └─────────────────────────────────┘ │
└───┘
 │
 ┌───────────────┼───────────────┐
 ▼ ▼ ▼
 ┌─────────────┐ ┌─────────────┐ ┌─────────────┐
 │ Node Manager│ │ Node Manager│ │ Node Manager│
 │ │ │ │ │ │
 │ ┌─────────┐ │ │ ┌─────────┐ │ │ ┌─────────┐ │
 │ │Container│ │ │ │Container│ │ │ │Container│ │
 │ │(Executor)│ │ │(Executor)│ │ │ │(Executor)│ │
 │ └─────────┘ │ │ └─────────┘ │ │ └─────────┘ │
 └─────────────┘ └─────────────┘ └─────────────┘
[bookmark: _Toc220524902]3.3 Worker Nodes and Executors
Worker Nodes are physical or virtual machines in the cluster that host executor processes.
Executors are JVM processes launched on worker nodes, responsible for:
Executing tasks assigned by the driver
Storing data for caching (Block Manager)
Reporting task status and metrics to the driver
Executor Internal Architecture:
┌──┐
│ EXECUTOR │
├──┤
│ │
│ ┌───┐ │
│ │ Thread Pool │ │
│ │ ┌────────┐ ┌────────┐ ┌────────┐ ┌────────┐ │ │
│ │ │ Task 1 │ │ Task 2 │ │ Task 3 │ │ Task N │ │ │
│ │ │ Thread │ │ Thread │ │ Thread │ │ Thread │ │ │
│ │ └────────┘ └────────┘ └────────┘ └────────┘ │ │
│ │ │ │
│ │ (Number of threads = spark.executor.cores) │ │
│ └───┘ │
│ │
│ ┌───┐ │
│ │ Block Manager │ │
│ │ │ │
│ │ ┌─────────────────┐ ┌─────────────────────────────┐│ │
│ │ │ Memory Store │ │ Disk Store ││ │
│ │ │ │ │ ││ │
│ │ │ • Cached RDDs │ │ • Spilled partitions ││ │
│ │ │ • Broadcast │ │ • Shuffle files ││ │
│ │ │ variables │ │ • Persisted data ││ │
│ │ └─────────────────┘ └─────────────────────────────┘│ │
│ │ │ │
│ └───┘ │
│ │
│ ┌───┐ │
│ │ Shuffle Manager │ │
│ │ • Writes shuffle output files │ │
│ │ • Serves shuffle data to other executors │ │
│ └───┘ │
│ │
└──┘
Key Executor Configuration Parameters:
	Parameter
	Description
	Recommendation

	`spark.executor.memory`
	Heap memory per executor
	4-16GB typical

	`spark.executor.cores`
	CPU cores per executor
	4-5 cores optimal

	`spark.executor.instances`
	Number of executors
	Based on workload

	`spark.executor.memoryOverhead`
	Off-heap memory
	10% of executor memory

[bookmark: _Toc220524903]3.4 Cluster Deployment Modes
Spark supports two deployment modes that determine where the driver runs:
Client Mode:
┌─────────────────────┐
│ Client Machine │
│ ┌───────────────┐ │
│ │ Driver │ │◄───── Driver runs on client
│ └───────┬───────┘ │
└──────────┼──────────┘
 │
 ▼
┌───┐
│ Cluster │
│ ┌──────────┐ ┌──────────┐ ┌──────────┐│
│ │ Executor │ │ Executor │ │ Executor ││
│ └──────────┘ └──────────┘ └──────────┘│
└───┘
Use Cases: Interactive development, notebooks (Jupyter, Zeppelin), debugging
Cluster Mode:
┌───┐
│ Cluster │
│ │
│ ┌───────────────┐ │
│ │ Driver │◄───── Driver runs in cluster
│ └───────┬───────┘ │
│ │ │
│ ┌───────┴───────┬──────────────┐ │
│ ▼ ▼ ▼ │
│┌──────────┐ ┌──────────┐ ┌──────────┐ │
││ Executor │ │ Executor │ │ Executor │ │
│└──────────┘ └──────────┘ └──────────┘ │
└───┘
Use Cases: Production jobs, scheduled pipelines, fault tolerance requirements
[bookmark: _Toc220524904]4. Spark Application Lifecycle
[bookmark: _Toc220524905]4.1 Application Submission
When a Spark application is submitted, the following sequence occurs:
┌───┐
│ Application Submission Flow │
└───┘

 ┌────────────┐ ┌────────────────┐ ┌────────────────┐
 │ spark- │ │ Cluster │ │ Driver │
 │ submit │────►│ Manager │────►│ Launch │
 └────────────┘ └────────────────┘ └───────┬────────┘
 │
 ┌───┘
 │
 ▼
 ┌────────────────┐ ┌────────────────┐ ┌────────────────┐
 │ SparkContext │ │ Request │ │ Executor │
 │ Initialization │────►│ Executors │────►│ Launch │
 └────────────────┘ └────────────────┘ └───────┬────────┘
 │
 ┌───┘
 │
 ▼
 ┌────────────────┐ ┌────────────────┐ ┌────────────────┐
 │ Execute User │ │ Build DAG │ │ Submit │
 │ Code │────►│ & Stages │────►│ Tasks │
 └────────────────┘ └────────────────┘ └────────────────┘
Submission Command Example:
spark-submit \
 --master yarn \
 --deploy-mode cluster \
 --driver-memory 4g \
 --executor-memory 8g \
 --executor-cores 4 \
 --num-executors 10 \
 --conf spark.sql.shuffle.partitions=200 \
 application.py
[bookmark: _Toc220524906]4.2 Resource Allocation
Static Allocation: Resources are allocated at application start and held until termination.
Static allocation configuration
spark = SparkSession.builder \
 .config("spark.executor.instances", 10) \
 .config("spark.executor.cores", 4) \
 .config("spark.executor.memory", "8g") \
 .getOrCreate()
Dynamic Allocation: Resources scale based on workload demands.
Dynamic allocation configuration
spark = SparkSession.builder \
 .config("spark.dynamicAllocation.enabled", True) \
 .config("spark.dynamicAllocation.minExecutors", 2) \
 .config("spark.dynamicAllocation.maxExecutors", 20) \
 .config("spark.dynamicAllocation.initialExecutors", 5) \
 .config("spark.dynamicAllocation.executorIdleTimeout", "60s") \
 .config("spark.dynamicAllocation.schedulerBacklogTimeout", "1s") \
 .getOrCreate()
Dynamic Allocation Behavior:
Executors
 ▲
 20 │ ┌─────────┐
 │ ╱│ │╲
 15 │ ╱ │ │ ╲
 │ ╱ │ │ ╲
 10 │ ┌───────┘ │ │ └───────┐
 │ ╱ │ Peak │ ╲
 5 │──────┘ │ Load │ └──────
 │ Initial │ │ Idle
 2 │── Min
 └──► Time
[bookmark: _Toc220524907]4.3 Task Execution
Once resources are allocated, task execution follows this pattern:
Task Execution Sequence:
┌──┐
│ Task Execution Detail │
└──┘

Driver Executor
 │ │
 │ 1. Serialize Task │
 │─────────────────────────────────► │
 │ (code + data references) │
 │ │
 │ 2. Deserialize Task
 │ │
 │ 3. Read Input Data
 │ (from HDFS/cache/shuffle)
 │ │
 │ 4. Execute Task
 │ (transformations)
 │ │
 │ 5. Write Output
 │ (shuffle files/result)
 │ │
 │ 6. Task Completion Status │
 │◄───────────────────────────────── │
 │ (metrics, status) │
 │ │
Task Metrics Collected:
Executor run time
GC time
Shuffle read/write metrics
Input/output sizes
Spill metrics (memory and disk)
[bookmark: _Toc220524908]4.4 Application Termination
An application terminates when:
All jobs complete successfully
An unhandled exception occurs
User explicitly stops the SparkContext
The application is killed externally
Cleanup Process:
┌────────────────┐ ┌────────────────┐ ┌────────────────┐
│ SparkContext │ │ Release │ │ Cleanup │
│ .stop() │────►│ Executors │────►│ Shuffle │
└────────────────┘ └────────────────┘ │ Files │
 └───────┬────────┘
 │
 ▼
 ┌────────────────┐ ┌────────────────┐
 │ Release │◄────│ Notify │
 │ Driver │ │ Cluster │
 │ Resources │ │ Manager │
 └────────────────┘ └────────────────┘
[bookmark: _Toc220524909]5. Execution Model Deep Dive
[bookmark: _Toc220524910]5.1 Jobs, Stages, and Tasks
Understanding the hierarchy of execution units is fundamental to Spark optimization:
Execution Hierarchy:
┌───┐
│ APPLICATION │
│ (One SparkContext, one or more Jobs) │
├───┤
│ │
│ ┌───┐ │
│ │ JOB 1 │ │
│ │ (Triggered by an action: collect, count, save, etc.) │ │
│ │ │ │
│ │ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │ │
│ │ │ STAGE 1 │ │ STAGE 2 │ │ STAGE 3 │ │ │
│ │ │ │ │ │ │ │ │ │
│ │ │ ┌────┬────┐ │ │ ┌────┬────┐ │ │ ┌────┬────┐ │ │ │
│ │ │ │ T1 │ T2 │ │──│ │ T1 │ T2 │ │──│ │ T1 │ T2 │ │ │ │
│ │ │ ├────┼────┤ │ │ ├────┼────┤ │ │ ├────┼────┤ │ │ │
│ │ │ │ T3 │ T4 │ │ │ │ T3 │ T4 │ │ │ │ T3 │ T4 │ │ │ │
│ │ │ └────┴────┘ │ │ └────┴────┘ │ │ └────┴────┘ │ │ │
│ │ │ (parallel) │ │ (parallel) │ │ (parallel) │ │ │
│ │ └──────────────┘ └──────────────┘ └──────────────┘ │ │
│ │ │ │ │ │ │
│ │ └────── Shuffle ───┴──── Shuffle ─────┘ │ │
│ └───┘ │
│ │
│ ┌───┐ │
│ │ JOB 2 │ │
│ │ ... │ │
│ └───┘ │
│ │
└───┘
Definitions:
	Unit
	Trigger
	Parallelism
	Boundary

	Job
	Action (e.g., `count()`, `collect()`)
	Sequential
	Action call

	Stage
	Shuffle operation
	Sequential
	Wide transformation

	Task
	Data partition
	Parallel
	One per partition

Example: Job/Stage/Task Breakdown
This code creates 2 Jobs, each with multiple stages

Job 1: Triggered by count()
df = spark.read.parquet("data/") # Stage 1.1
 .filter(col("status") == "active") # Stage 1.1 (narrow)
 .groupBy("category") # Stage 1.2 (shuffle)
 .count() # Stage 1.2

result = df.count() # Triggers Job 1

Job 2: Triggered by write
df.write.parquet("output/") # Triggers Job 2
[bookmark: _Toc220524911]5.2 Task Scheduling
The Task Scheduler assigns tasks to executors considering:
Scheduling Considerations:
┌───┐
│ Task Scheduling Decision │
└───┘

 ┌─────────────┐
 │ Task │
 │ Queue │
 └──────┬──────┘
 │
 ┌────────────┼────────────┐
 ▼ ▼ ▼
 ┌──────────┐ ┌──────────┐ ┌──────────┐
 │ Data │ │ Executor │ │ Fair │
 │ Locality │ │ Available│ │ Sharing │
 │ │ │ Resources│ │ │
 └────┬─────┘ └────┬─────┘ └────┬─────┘
 │ │ │
 └────────────┼────────────┘
 ▼
 ┌──────────┐
 │ Selected │
 │ Executor │
 └──────────┘
Data Locality Levels:
	Level
	Description
	Network Cost

	`PROCESS_LOCAL`
	Data in same JVM (cached)
	None

	`NODE_LOCAL`
	Data on same node (disk)
	None

	`NO_PREF`
	No preference
	Varies

	`RACK_LOCAL`
	Data on same rack
	Low

	`ANY`
	Data on any node
	High

Locality Wait Configuration:
How long to wait for better locality before giving up
spark.conf.set("spark.locality.wait", "3s") # Overall
spark.conf.set("spark.locality.wait.node", "3s") # Node-local
spark.conf.set("spark.locality.wait.process", "3s") # Process-local
spark.conf.set("spark.locality.wait.rack", "3s") # Rack-local
[bookmark: _Toc220524912]5.3 Speculative Execution
Speculative execution launches backup copies of slow tasks:
┌───┐
│ Speculative Execution │
└───┘

Normal Task Progress:

Task 1: ██ ✓ (Complete)
Task 2: ██ ✓ (Complete)
Task 3: ████████░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ (Slow - 20%)
Task 4: ██ ✓ (Complete)

Speculation Triggered:

Task 3: ████████████████░░░░░░░░░░░░░░░░░░░░░░░░ (Original - 40%)
Task 3': ██ ✓ (Speculative - Complete!)

Result: First completing task (original or speculative) is used
Configuration:
spark.conf.set("spark.speculation", True)
spark.conf.set("spark.speculation.multiplier", "1.5") # Task must be 1.5x slower
spark.conf.set("spark.speculation.quantile", "0.75") # 75% of tasks must complete first
spark.conf.set("spark.speculation.minTaskRuntime", "100") # Minimum runtime before speculation
[bookmark: _Toc220524913]6. DAG Scheduler Architecture
[bookmark: _Toc220524914]6.1 DAG Construction
The DAG Scheduler transforms logical operations into a physical execution plan:
DAG Construction Process:
┌───┐
│ DAG Construction │
└───┘

User Code (Logical Plan):
─────────────────────────

df = spark.read.parquet("input/")
 .filter(col("year") == 2024)
 .join(lookup_df, "key")
 .groupBy("category")
 .agg(sum("amount"))
 .write.parquet("output/")

 │
 ▼

RDD Lineage Graph:
──────────────────

 ┌───────────┐ ┌───────────┐
 │ Parquet │ │ Lookup │
 │ Scan │ │ DF │
 └─────┬─────┘ └─────┬─────┘
 │ │
 ▼ │
 ┌───────────┐ │
 │ Filter │ │
 │ year=2024 │ │
 └─────┬─────┘ │
 │ │
 └────────┬────────┘
 ▼
 ┌───────────┐
 │ Join │ ◄─── Wide (Shuffle)
 │ │
 └─────┬─────┘
 │
 ▼
 ┌───────────┐
 │ GroupBy │ ◄─── Wide (Shuffle)
 │ Agg │
 └─────┬─────┘
 │
 ▼
 ┌───────────┐
 │ Parquet │
 │ Write │
 └───────────┘
[bookmark: _Toc220524915]6.2 Stage Boundary Determination
Stages are determined by identifying shuffle boundaries:
Stage Division Algorithm:
┌───┐
│ Stage Boundary Detection │
└───┘

For each RDD in reverse topological order:
 1. If RDD has narrow dependencies only → same stage as parent
 2. If RDD has wide dependency → new stage boundary

Result for previous example:
─────────────────────────────

 STAGE 1 STAGE 3
 ┌─────────────────┐ ┌─────────────┐
 │ Parquet Scan │ │ Lookup DF │
 │ + │ │ Scan │
 │ Filter │ └──────┬──────┘
 └────────┬────────┘ │
 │ │
 │ ════ SHUFFLE ════ │
 │ (Join) │
 └────────────┬────────────┘
 │
 STAGE 2 │
 ┌────────────────────────┐
 │ Join │
 │ + │
 │ Local Filter │
 └───────────┬────────────┘
 │
 ════ SHUFFLE ════
 (GroupBy)
 │
 STAGE 4 │
 ┌────────────────────────┐
 │ Aggregate │
 │ + │
 │ Parquet Write │
 └────────────────────────┘
[bookmark: _Toc220524916]6.3 Task Set Generation
Each stage generates a TaskSet with one task per partition:
┌───┐
│ Task Set Generation │
└───┘

Stage 1 (200 partitions) → TaskSet 1:
┌───┐
│ Task 0 │ Task 1 │ Task 2 │ ... │ Task 198 │ Task 199 │
│ Part 0 │ Part 1 │ Part 2 │ ... │ Part 198 │ Part 199 │
└───┘

Each task contains:
┌──┐
│ • Partition ID │
│ • Preferred locations (data locality) │
│ • Serialized computation closure │
│ • Stage ID and attempt number │
│ • Dependency information │
└──┘
[bookmark: _Toc220524917]6.4 DAG Visualization
The Spark UI provides visualization of the DAG:
Key Information in DAG Visualization:
┌───┐
│ Spark UI - DAG Visualization │
├───┤
│ │
│ Job 0 ── │
│ ├── Stage 0 [scan, filter] │
│ │ └── 200 tasks (5.2 min) │
│ │ │ │
│ │ ═══ Shuffle Write: 2.5 GB ═══ │
│ │ │ │
│ ├── Stage 1 [shuffle read, join] │
│ │ └── 200 tasks (8.1 min) │
│ │ │ │
│ │ ═══ Shuffle Write: 1.2 GB ═══ │
│ │ │ │
│ └── Stage 2 [aggregate, write] │
│ └── 50 tasks (2.3 min) │
│ │
│ Metrics: │
│ • Total Duration: 15.6 min │
│ • Shuffle Read: 3.7 GB │
│ • Shuffle Write: 3.7 GB │
│ • Input: 50 GB │
│ • Output: 500 MB │
│ │
└───┘
[bookmark: _Toc220524918]7. Transformations: Narrow vs Wide
[bookmark: _Toc220524919]7.1 Narrow Transformations
Narrow transformations process data within a single partition, requiring no data movement:
Characteristics:
Each input partition contributes to at most one output partition
Can be pipelined within a single task
No shuffle required
Common Narrow Transformations:
	Transformation
	Description
	Partition Mapping

	`map()`
	Apply function to each element
	1:1

	`flatMap()`
	Map and flatten results
	1:1

	`filter()`
	Select elements matching predicate
	1:1

	`mapPartitions()`
	Apply function to each partition
	1:1

	`union()`
	Combine two RDDs
	n:n (no shuffle)

	`coalesce()`
	Reduce partitions (no shuffle)
	n:1

Narrow Transformation Visualization:
┌───┐
│ Narrow Transformation │
│ (e.g., filter) │
└───┘

 Input Partitions Output Partitions

 ┌─────────────┐ ┌─────────────┐
 │ Partition 0 │──── filter ──►│ Partition 0 │
 │ [1,2,3,4] │ >2 │ [3,4] │
 └─────────────┘ └─────────────┘

 ┌─────────────┐ ┌─────────────┐
 │ Partition 1 │──── filter ──►│ Partition 1 │
 │ [5,6,7,8] │ >2 │ [5,6,7,8] │
 └─────────────┘ └─────────────┘

 ┌─────────────┐ ┌─────────────┐
 │ Partition 2 │──── filter ──►│ Partition 2 │
 │ [1,2,9,10] │ >2 │ [9,10] │
 └─────────────┘ └─────────────┘

 No data movement between partitions!
[bookmark: _Toc220524920]7.2 Wide Transformations
Wide transformations require data from multiple input partitions, triggering a shuffle:
Characteristics:
Each output partition may depend on multiple input partitions
Requires data to be redistributed across the cluster
Creates a stage boundary
Most expensive operations in Spark
Common Wide Transformations:
	Transformation
	Description
	Data Movement

	`groupByKey()`
	Group values by key
	Full shuffle

	`reduceByKey()`
	Aggregate by key
	Shuffle (with local combine)

	`aggregateByKey()`
	Flexible aggregation by key
	Shuffle (with local combine)

	`join()`
	Join two datasets by key
	Full shuffle (both sides)

	`distinct()`
	Remove duplicates
	Full shuffle

	`repartition()`
	Redistribute data
	Full shuffle

	`sortBy()`
	Sort data
	Full shuffle

Wide Transformation Visualization:
┌───┐
│ Wide Transformation │
│ (e.g., groupByKey) │
└───┘

 Input Partitions Output Partitions

 ┌─────────────┐ ┌─────────────────┐
 │ Partition 0 │ │ Partition 0 │
 │ (a,1)(b,2) │─────┐ ┌────►│ (a,1)(a,3)(a,5) │
 └─────────────┘ │ │ └─────────────────┘
 │ │
 ┌─────────────┐ │ │ ┌─────────────────┐
 │ Partition 1 │─────┼─────────┼────►│ Partition 1 │
 │ (a,3)(c,4) │ │ │ │ (b,2)(b,6) │
 └─────────────┘ │ SHUFFLE│ └─────────────────┘
 │ │
 ┌─────────────┐ │ │ ┌─────────────────┐
 │ Partition 2 │─────┘ └────►│ Partition 2 │
 │ (a,5)(b,6) │ │ (c,4) │
 └─────────────┘ └─────────────────┘

 All data with key 'a' goes to Partition 0
 All data with key 'b' goes to Partition 1
 All data with key 'c' goes to Partition 2
[bookmark: _Toc220524921]7.3 Performance Implications
Narrow vs Wide Comparison:
	Aspect
	Narrow
	Wide

	Network I/O
	None
	High

	Disk I/O
	None (unless spill)
	Always (shuffle files)

	Memory
	Lower
	Higher (buffers)

	Parallelism
	Full
	Barrier between stages

	Failure Recovery
	Only failed partition
	May require full stage rerun

Optimization Strategies:
AVOID: Multiple wide transformations
df.groupBy("key1").count() # Shuffle 1
 .join(other_df, "key2") # Shuffle 2
 .groupBy("key3").sum() # Shuffle 3

PREFER: Minimize shuffles
df.join(other_df, ["key1", "key2"]) # Single shuffle
 .groupBy("key1", "key3") # Single shuffle
 .agg(count("*"), sum("value")) # Combined in same shuffle
[bookmark: _Toc220524922]8. Shuffle Architecture
[bookmark: _Toc220524923]8.1 Shuffle Write Phase
During shuffle write, each map task partitions its output and writes to local disk:
Shuffle Write Process:
┌───┐
│ Shuffle Write Phase │
└───┘

 Map Task (Partition 0)
 ┌──┐
 │ │
 │ Input Data │
 │ ┌───┐ │
 │ │ (a,1), (b,2), (c,3), (a,4), (b,5), (d,6), ... │ │
 │ └───────────────────────┬─────────────────────────────┘ │
 │ │ │
 │ ▼ │
 │ ┌───────────────────────┐ │
 │ │ Hash Partitioner │ │
 │ │ (numPartitions = 3) │ │
 │ └───────────┬───────────┘ │
 │ │ │
 │ ┌─────────────────┼─────────────────┐ │
 │ ▼ ▼ ▼ │
 │ ┌─────────┐ ┌─────────┐ ┌─────────┐ │
 │ │ Bucket 0│ │ Bucket 1│ │ Bucket 2│ │
 │ │(a,1)(a,4) │(b,2)(b,5) │(c,3)(d,6) │
 │ └────┬────┘ └────┬────┘ └────┬────┘ │
 │ │ │ │ │
 │ └─────────────────┼─────────────────┘ │
 │ │ │
 │ ▼ │
 │ ┌───────────────────────┐ │
 │ │ Sort & Spill to Disk │ │
 │ └───────────────────────┘ │
 │ │ │
 │ ▼ │
 │ ┌───┐ │
 │ │ Shuffle File: shuffle_0_0.data │ │
 │ │ Index File: shuffle_0_0.index │ │
 │ └───┘ │
 │ │
 └──┘
Shuffle Write Configuration:
Buffer size for sorting
spark.conf.set("spark.shuffle.file.buffer", "32k")

Spill threshold
spark.conf.set("spark.shuffle.spill.numElementsForceSpillThreshold", "1000000")

Compression
spark.conf.set("spark.shuffle.compress", True)
spark.conf.set("spark.io.compression.codec", "lz4") # or snappy, zstd
[bookmark: _Toc220524924]8.2 Shuffle Read Phase
Reduce tasks fetch their partitions from all map tasks:
Shuffle Read Process:
┌───┐
│ Shuffle Read Phase │
└───┘

 Map Task Outputs

 Executor 1 Executor 2 Executor 3
 ┌─────────┐ ┌─────────┐ ┌─────────┐
 │Map 0 │ │Map 1 │ │Map 2 │
 │┌───────┐│ │┌───────┐│ │┌───────┐│
 ││Part 0 ││ ││Part 0 ││ ││Part 0 ││
 │├───────┤│ │├───────┤│ │├───────┤│
 ││Part 1 ││ ││Part 1 ││ ││Part 1 ││
 │├───────┤│ │├───────┤│ │├───────┤│
 ││Part 2 ││ ││Part 2 ││ ││Part 2 ││
 │└───────┘│ │└───────┘│ │└───────┘│
 └────┬────┘ └────┬────┘ └────┬────┘
 │ │ │
 │ Reduce Task 0 fetches Partition 0 from all
 └──────────────────────┼──────────────────────┘
 │
 ▼
 ┌───────────────────────┐
 │ Reduce Task 0 │
 │ │
 │ • Fetch Part 0 from │
 │ Map 0, 1, 2 │
 │ • Merge sorted data │
 │ • Apply reduce func │
 └───────────────────────┘
Shuffle Read Configuration:
Simultaneous fetch connections
spark.conf.set("spark.reducer.maxSizeInFlight", "48m")
spark.conf.set("spark.reducer.maxReqsInFlight", "Int.MaxValue")

Block fetch retries
spark.conf.set("spark.shuffle.io.maxRetries", "3")
spark.conf.set("spark.shuffle.io.retryWait", "5s")
[bookmark: _Toc220524925]8.3 Shuffle Managers
Spark provides different shuffle implementations:
Sort Shuffle Manager (Default):
┌───┐
│ Sort Shuffle Manager │
└───┘

Advantages:
• Single file per map task (fewer files)
• Efficient for large number of reduce partitions
• Better garbage collection

Process:
┌────────────────┐ ┌────────────────┐ ┌────────────────┐
│ Sort records │────►│ Write single │────►│ Index file │
│ by partition │ │ data file │ │ tracks offsets│
│ + key │ │ │ │ │
└────────────────┘ └────────────────┘ └────────────────┘

Files created: 2 per map task (data + index)
Tungsten Sort Shuffle:
Enabled when:
• No map-side combine
• Fewer than 16M partitions
• Serialized records fit in memory

Benefits:
• Operates on serialized data (no deserialization)
• Cache-efficient sorting
• Lower GC overhead
[bookmark: _Toc220524926]8.4 Shuffle Optimization Techniques
1. Minimize Shuffle Data:
AVOID: Sending all columns through shuffle
df.groupBy("key").agg(collect_list("*")) # Shuffles entire row

PREFER: Select only needed columns
df.select("key", "value").groupBy("key").agg(sum("value"))
2. Use Map-Side Combine:
AVOID: groupByKey (no map-side reduction)
rdd.groupByKey().mapValues(sum)

PREFER: reduceByKey (combines locally first)
rdd.reduceByKey(lambda a, b: a + b)
Comparison of shuffle data:
groupByKey: reduceByKey:

Map 0: (a,1)(a,2)(a,3) ────► Map 0: (a,6) ────┐
Map 1: (a,4)(a,5)(a,6) ────► Map 1: (a,15) ───┼──► (a,21)
Map 2: (a,7)(a,8)(a,9) ────► Map 2: (a,24) ───┘

Shuffle: 9 records Shuffle: 3 records
3. Tune Shuffle Partitions:
Default is 200, adjust based on data size
spark.conf.set("spark.sql.shuffle.partitions", "400")

Rule of thumb: aim for 100-200MB per partition
For 40GB shuffled data: 40GB / 200MB = 200 partitions
4. Enable Compression:
spark.conf.set("spark.shuffle.compress", True)
spark.conf.set("spark.io.compression.codec", "zstd") # Better compression ratio
Or "lz4" for faster compression/decompression
[bookmark: _Toc220524927]9. Catalyst Optimizer
[bookmark: _Toc220524928]9.1 Query Planning Pipeline
The Catalyst optimizer transforms SQL queries and DataFrame operations through multiple phases:
Optimization Pipeline:
┌───┐
│ Catalyst Optimization Pipeline │
└───┘

 SQL Query / DataFrame API
 │
 ▼
 ┌───────────────────┐
 │ Unresolved │ • Column names unresolved
 │ Logical Plan │ • Tables not bound
 └─────────┬─────────┘
 │
 ▼ Analysis (Catalog lookup)
 ┌───────────────────┐
 │ Resolved │ • Schema resolved
 │ Logical Plan │ • Column types known
 └─────────┬─────────┘
 │
 ▼ Logical Optimization
 ┌───────────────────┐
 │ Optimized │ • Predicate pushdown
 │ Logical Plan │ • Column pruning
 │ │ • Constant folding
 └─────────┬─────────┘
 │
 ▼ Physical Planning
 ┌───────────────────┐
 │ Physical │ • Join strategies selected
 │ Plans (N) │ • Scan methods chosen
 │ │ • Cost estimation
 └─────────┬─────────┘
 │
 ▼ Cost-Based Selection
 ┌───────────────────┐
 │ Selected │ • Best plan chosen
 │ Physical Plan │ • Based on statistics
 └─────────┬─────────┘
 │
 ▼ Code Generation
 ┌───────────────────┐
 │ Executable │ • Java bytecode
 │ Code (RDDs) │ • Whole-stage codegen
 └───────────────────┘
[bookmark: _Toc220524929]9.2 Logical Plan Optimization
Rule-Based Optimizations:
	Optimization
	Description
	Example

	Predicate Pushdown
	Move filters closer to data source
	Filter before join

	Column Pruning
	Remove unused columns early
	Select only needed cols

	Constant Folding
	Evaluate constant expressions
	`1 + 2` → `3`

	Boolean Simplification
	Simplify boolean expressions
	`true AND x` → `x`

	Combine Filters
	Merge adjacent filters
	Two filters → one

	Combine Limits
	Use smallest limit
	`LIMIT 100 LIMIT 50` → `LIMIT 50`

Predicate Pushdown Example:
Before Optimization: After Optimization:

 ┌───────────┐ ┌───────────┐
 │ Filter │ │ Scan │
 │ year=2024 │ │ (with │
 └─────┬─────┘ │ filter │
 │ │ year=2024)│
 ┌─────┴─────┐ └───────────┘
 │ Join │ │
 └─────┬─────┘ ┌────┴────┐
 ┌───┴───┐ │ Join │
 │ │ └────┬────┘
 ┌──┴──┐ ┌──┴──┐ ┌──┴──┐
 │Scan │ │Scan │ ┌─┴─┐ ┌─┴─┐
 │ A │ │ B │ │ A │ │ B │
 └─────┘ └─────┘ └───┘ └───┘

Filter applied AFTER scan Filter pushed INTO scan
(reads all data, then filters) (reads only matching data)
[bookmark: _Toc220524930]9.3 Physical Plan Selection
Join Strategy Selection:
Catalyst chooses between join implementations based on table sizes and available statistics:
	Join Type
	Use Case
	Characteristics

	Broadcast Hash Join
	Small table (< 10MB default)
	No shuffle, fast

	Shuffle Hash Join
	Medium tables
	Shuffle both sides

	Sort Merge Join
	Large tables
	Shuffle + sort, scalable

	Broadcast Nested Loop
	Small table, non-equi join
	No shuffle

	Cartesian Product
	Cross join
	Expensive, full product

Join Selection Logic:
┌───┐
│ Join Strategy Selection │
└───┘

 ┌─────────────────┐
 │ Join Request │
 └────────┬────────┘
 │
 ┌──────────────┴──────────────┐
 │ Is one side < broadcast │
 │ threshold (10MB)? │
 └──────────────┬──────────────┘
 │ │
 YES NO
 │ │
 ▼ ▼
 ┌───────────────┐ ┌──────────────────┐
 │ Broadcast │ │ Are both sides │
 │ Hash Join │ │ sortable by key? │
 └───────────────┘ └────────┬─────────┘
 │ │
 YES NO
 │ │
 ▼ ▼
 ┌───────────────┐ ┌───────────────┐
 │ Sort Merge │ │ Shuffle Hash │
 │ Join │ │ Join │
 └───────────────┘ └───────────────┘
Configuration:
Broadcast threshold (default 10MB)
spark.conf.set("spark.sql.autoBroadcastJoinThreshold", "20MB")

Force broadcast hint
from pyspark.sql.functions import broadcast
df1.join(broadcast(df2), "key")

Disable broadcast
spark.conf.set("spark.sql.autoBroadcastJoinThreshold", "-1")
[bookmark: _Toc220524931]9.4 Code Generation
Whole-Stage Code Generation:
Instead of interpreting the query plan row-by-row, Catalyst generates optimized Java bytecode:
Interpreted Execution: Code Generation:
(Virtual function calls) (Fused operators)

┌─────────┐ ┌─────────────────────────┐
│ Scan │ → Row │ Generated Code: │
└────┬────┘ │ │
 ↓ │ while (scan.hasNext) { │
┌─────────┐ │ row = scan.next() │
│ Filter │ → Row │ if (row.year == 2024)│
└────┬────┘ │ if (row.status == │
 ↓ │ "active") { │
┌─────────┐ │ sum += row.amt │
│ Project │ → Row │ } │
└────┬────┘ │ } │
 ↓ │ │
┌─────────┐ └─────────────────────────┘
│ Agg │
└─────────┘ Single tight loop!
 No virtual calls!
Many virtual function calls
Viewing Generated Code:
Enable debug output
spark.conf.set("spark.sql.codegen.wholeStage", True)
df.explain(mode="codegen")

Or in Spark UI: SQL tab → Details → Generated Code
[bookmark: _Toc220524932]10. Tungsten Execution Engine
[bookmark: _Toc220524933]10.1 Memory Management
Tungsten introduces off-heap memory management to avoid JVM garbage collection overhead:
Memory Layout:
┌───┐
│ Tungsten Memory Management │
└───┘

Traditional JVM Objects: Tungsten Binary Format:

┌─────────────────────┐ ┌─────────────────────────────┐
│ Java Object Header │ 12 bytes │ Contiguous Memory Region │
├─────────────────────┤ │ │
│ Padding │ 4 bytes │ ┌─────┬─────┬─────┬─────┐ │
├─────────────────────┤ │ │Row 1│Row 2│Row 3│Row 4│ │
│ int id │ 4 bytes │ └─────┴─────┴─────┴─────┘ │
├─────────────────────┤ │ │
│ String ref │ 8 bytes │ • No object headers │
├─────────────────────┤ │ • No GC overhead │
│ double value │ 8 bytes │ • Cache-friendly layout │
└─────────────────────┘ │ • Off-heap storage │
 │ │
Total: 36 bytes + String object └─────────────────────────────┘

 Total: ~16 bytes per row
[bookmark: _Toc220524934]10.2 Binary Processing
Tungsten operates directly on binary data without deserialization:
UnsafeRow Format:
┌───┐
│ UnsafeRow Structure │
└───┘

For a row with schema: (int, string, double)

┌──┐
│ UnsafeRow │
├────────┬──┬──────────────┤
│ Null │ Fixed-Length Values │ Variable │
│ Bitmap │ (8 bytes each) │ Length │
│ │ │ Data │
├────────┼──────────┬──────────┬──────────────────┼──────────────┤
│ 0x00 │ int val │ offset+ │ double val │ "string" │
│ (1 byte│ (padded │ len │ (8 bytes) │ bytes │
│ │ to 8) │ (8 bytes)│ │ │
└────────┴──────────┴──────────┴──────────────────┴──────────────┘
 │ │
 │ └──► Points to variable-length region
 │
 └──► Value stored inline (padded to 8-byte boundary)
Benefits:
	Aspect
	Traditional
	Tungsten

	Memory footprint
	~2x data size
	~1x data size

	Serialization
	Required
	Not needed

	GC pressure
	High
	Minimal

	Cache efficiency
	Poor
	Excellent

[bookmark: _Toc220524935]10.3 Cache-Aware Computation
Tungsten algorithms are designed for modern CPU cache hierarchies:
Cache-Aware Sorting:
┌───┐
│ Cache-Aware Sort │
└───┘

Traditional Sort: Tungsten Sort:

┌───────────────────┐ ┌─────────────────────────────┐
│ Full Record │ │ Pointer + Prefix Array │
│ (100 bytes each) │ │ (16 bytes each) │
├───────────────────┤ ├─────────────────────────────┤
│ Record 1 │ │ ptr₁ | prefix₁ (8+8 bytes) │
│ Record 2 │ │ ptr₂ | prefix₂ │
│ Record 3 │ │ ptr₃ | prefix₃ │
│ ... │ │ ... │
└───────────────────┘ └─────────────────────────────┘

Sort moves 100 bytes Sort moves 16 bytes
per comparison per comparison

Cache misses: Many Cache misses: Few
[bookmark: _Toc220524936]10.4 Whole-Stage Code Generation
Tungsten generates specialized code that fuses multiple operators:
Code Generation Example:
Query
df.filter(col("age") > 25).select("name", "age").agg(count("*"))
Generated Code (Simplified):
// Instead of separate Filter, Project, Aggregate operators:

public void processRows(InternalRow[] rows) {
 long count = 0;
 for (int i = 0; i < rows.length; i++) {
 // Fused filter + project + aggregate
 if (rows[i].getInt(1) > 25) { // age > 25
 count++;
 }
 }
 // Output count
}
Benefits of Whole-Stage CodeGen:
	Aspect
	Volcano Model
	Whole-Stage CodeGen

	Function calls
	Per row per operator
	None (inlined)

	Type boxing
	Required
	Avoided

	Virtual dispatch
	Per operation
	Eliminated

	CPU efficiency
	~1M rows/sec
	~100M rows/sec

[bookmark: _Toc220524937]11. Memory Management Architecture
[bookmark: _Toc220524938]11.1 Unified Memory Model
Spark 1.6+ uses a unified memory model that dynamically shares memory between execution and storage:
Memory Regions:
┌───┐
│ Executor Memory Layout │
│ (spark.executor.memory = 8GB) │
└───┘

┌───┐
│ │
│ Reserved Memory (300MB) │
│ └─ System overhead, internal bookkeeping │
│ │
├───┤
│ │
│ User Memory (40% of remaining = ~3.08GB) │
│ └─ User data structures, UDF variables, RDD metadata │
│ │
├───┤
│ │
│ ┌───┐ │
│ │ Spark Memory (60% of remaining = ~4.62GB) │ │
│ │ │ │
│ │ ┌──────────────────────┬──────────────────────────┐ │ │
│ │ │ Storage Memory │ Execution Memory │ │ │
│ │ │ (50%) │ (50%) │ │ │
│ │ │ │ │ │ │
│ │ │ • Cached RDDs │ • Shuffles │ │ │
│ │ │ • Broadcast vars │ • Joins │ │ │
│ │ │ • Unroll memory │ • Sorts │ │ │
│ │ │ │ • Aggregations │ │ │
│ │ │ ~2.31GB │ ~2.31GB │ │ │
│ │ │ ◄──────────┼──────────► │ │ │
│ │ │ Dynamic Sharing │ │ │
│ │ └──────────────────────┴──────────────────────────┘ │ │
│ │ │ │
│ └───┘ │
│ │
└───┘

Additional: Off-Heap Memory (spark.memory.offHeap.size)
┌───┐
│ Tungsten off-heap storage (optional, not subject to GC) │
└───┘
[bookmark: _Toc220524939]11.2 Storage Memory
Storage memory is used for caching and propagating internal data:
Caching Behavior:
Different storage levels and their memory usage

from pyspark import StorageLevel

Memory only (default for .cache())
df.persist(StorageLevel.MEMORY_ONLY)

Memory and disk (spill to disk if memory full)
df.persist(StorageLevel.MEMORY_AND_DISK)

Serialized (less memory, more CPU)
df.persist(StorageLevel.MEMORY_ONLY_SER)

Off-heap storage
df.persist(StorageLevel.OFF_HEAP)
Storage Level Comparison:
	Level
	Space
	CPU
	In Memory
	On Disk
	Serialized

	MEMORY_ONLY
	High
	Low
	Yes
	No
	No

	MEMORY_AND_DISK
	High
	Low
	Some
	Some
	No

	MEMORY_ONLY_SER
	Low
	High
	Yes
	No
	Yes

	MEMORY_AND_DISK_SER
	Low
	High
	Some
	Some
	Yes

	DISK_ONLY
	Low
	High
	No
	Yes
	Yes

[bookmark: _Toc220524940]11.3 Execution Memory
Execution memory supports computation during task execution:
Memory Usage by Operation:
┌───┐
│ Execution Memory Consumers │
└───┘

┌───┐
│ Shuffle Operations │
│ ├─ ExternalSorter: Sorting before shuffle write │
│ └─ ShuffleExternalSorter: Tungsten shuffle sorting │
├───┤
│ Join Operations │
│ ├─ Hash Join: Building hash tables │
│ ├─ Sort Merge Join: Sorting both sides │
│ └─ Broadcast Join: Receiving broadcast data │
├───┤
│ Aggregation Operations │
│ ├─ Hash Aggregation: Building aggregation hash map │
│ └─ Sort Aggregation: Sorting for group-by │
├───┤
│ Sort Operations │
│ └─ External Sort: In-memory sorting with spill │
└───┘
Spilling Behavior:
When execution memory is exhausted, data spills to disk:
Memory Usage Over Time:

 ▲
100% │ ┌─────────┐
 │ │ │ Spill to disk triggered
 │ ╱│ │╲
 75% │ ╱ │ │ ╲
 │ ╱ │ │ ╲ ┌─────────┐
 50% │ ╱ │ │ ╲ ╱│ │
 │╱ │ │ ╲╱ │ │
 25% │ │ │ │ │
 │ │ │ │ │
 └─────┴─────────┴───────┴─────────┴──────► Time
 Task 1 Task 2
[bookmark: _Toc220524941]11.4 Memory Tuning
Key Configuration Parameters:
Memory fraction for Spark operations (default 0.6)
spark.conf.set("spark.memory.fraction", "0.6")

Fraction of Spark memory for storage (default 0.5)
spark.conf.set("spark.memory.storageFraction", "0.5")

Off-heap memory (disabled by default)
spark.conf.set("spark.memory.offHeap.enabled", True)
spark.conf.set("spark.memory.offHeap.size", "2g")

GC tuning
spark.conf.set("spark.executor.extraJavaOptions",
 "-XX:+UseG1GC -XX:G1HeapRegionSize=16M")
Memory Tuning Guidelines:
	Scenario
	Recommendation

	Heavy caching
	Increase `storageFraction`

	Complex aggregations
	Decrease `storageFraction`

	Large broadcasts
	Increase `spark.memory.fraction`

	Python UDFs
	Increase `spark.executor.memoryOverhead`

	OOM during shuffle
	Increase executor memory or reduce parallelism

[bookmark: _Toc220524942]12. Data Partitioning Strategies
[bookmark: _Toc220524943]12.1 Hash Partitioning
Hash partitioning distributes data based on the hash code of partition keys:
Hash Partitioning Mechanism:
┌───┐
│ Hash Partitioning │
└───┘

Input Records:
┌───┐
│ (A, 1), (B, 2), (A, 3), (C, 4), (B, 5), (D, 6), (A, 7), (C, 8) │
└───┘
 │
 ▼
 partition = hash(key) % numPartitions
 (numPartitions = 4)
 │
 ┌───────────────────────┼───────────────────────┐
 │ │ │ │ │
 ▼ ▼ ▼ ▼ ▼
 ┌───────┐ ┌───────┐ ┌───────┐ ┌───────┐
 │ Part 0│ │ Part 1│ │ Part 2│ │ Part 3│
 │ │ │ │ │ │ │ │
 │ (A,1) │ │ (B,2) │ │ (C,4) │ │ (D,6) │
 │ (A,3) │ │ (B,5) │ │ (C,8) │ │ │
 │ (A,7) │ │ │ │ │ │ │
 └───────┘ └───────┘ └───────┘ └───────┘
Using Hash Partitioning:
Explicit repartitioning by column
df.repartition(200, "customer_id")

For RDDs
rdd.partitionBy(200, lambda k: hash(k) % 200)
[bookmark: _Toc220524944]12.2 Range Partitioning
Range partitioning distributes data based on value ranges:
Range Partitioning Mechanism:
┌───┐
│ Range Partitioning │
└───┘

Input Records (sorted by date):
┌───┐
│ 2024-01-01, 2024-01-15, 2024-02-10, 2024-03-05, 2024-03-20, │
│ 2024-04-01, 2024-04-15, 2024-05-10, 2024-06-01, 2024-06-30 │
└───┘
 │
 ▼
 Range boundaries determined by sampling
 (numPartitions = 4)
 │
 ┌───────────────────────┼───────────────────────┐
 │ │ │ │ │
 ▼ ▼ ▼ ▼ ▼
 ┌───────────┐ ┌───────────┐ ┌───────────┐ ┌───────────┐
 │ Part 0 │ │ Part 1 │ │ Part 2 │ │ Part 3 │
 │ Jan-Feb │ │ Feb-Mar │ │ Apr-May │ │ May-Jun │
 │ │ │ │ │ │ │ │
 │ 01-01 │ │ 02-10 │ │ 04-01 │ │ 06-01 │
 │ 01-15 │ │ 03-05 │ │ 04-15 │ │ 06-30 │
 │ │ │ 03-20 │ │ 05-10 │ │ │
 └───────────┘ └───────────┘ └───────────┘ └───────────┘
Using Range Partitioning:
Range partition (useful for ordered data)
df.repartitionByRange(200, "date")

RDD range partitioning
from pyspark.rdd import RDD
rdd.sortByKey(numPartitions=200) # Implicitly uses range partitioner
[bookmark: _Toc220524945]12.3 Custom Partitioning
Custom partitioners provide control over data distribution:
Use Cases for Custom Partitioning:
	Use Case
	Strategy

	Geographic data
	Partition by region/country

	Time-series
	Partition by time window

	Skewed data
	Salt keys to distribute evenly

	Co-location
	Same partitioner for join optimization

Custom Partitioner Example:
from pyspark import SparkContext

def geographic_partitioner(key):
 """Partition by geographic region"""
 region_map = {
 'US': 0, 'CA': 0, # North America
 'UK': 1, 'DE': 1, 'FR': 1, # Europe
 'JP': 2, 'CN': 2, 'IN': 2, # Asia
 }
 return region_map.get(key, 3) # Default partition for others

Apply custom partitioner
rdd.partitionBy(4, geographic_partitioner)
Partition Optimization Tips:
Check current partitioning
print(f"Number of partitions: {df.rdd.getNumPartitions()}")

Optimal partition size: 100-200MB
Calculate: total_data_size / 150MB = num_partitions

Coalesce (reduce partitions without shuffle)
df_smaller = df.coalesce(50)

Repartition (full shuffle, even distribution)
df_even = df.repartition(200)

Repartition by column (for join optimization)
df_partitioned = df.repartition(200, "join_key")
[bookmark: _Toc220524946]13. Adaptive Query Execution (AQE)
[bookmark: _Toc220524947]13.1 Runtime Re-optimization
AQE (Spark 3.0+) adjusts query plans at runtime based on actual data statistics:
AQE Overview:
┌───┐
│ Adaptive Query Execution Flow │
└───┘

 ┌───────────────────────────┐
 │ Initial Physical Plan │
 │ (Based on estimates) │
 └─────────────┬─────────────┘
 │
 ▼
 ┌───────────────────────────┐
 │ Execute Stage 1 │
 └─────────────┬─────────────┘
 │
 ▼
 ┌───────────────────────────┐
 │ Collect Runtime Stats │
 │ • Actual partition sizes │
 │ • Data distribution │
 │ • Skew detection │
 └─────────────┬─────────────┘
 │
 ▼
 ┌───────────────────────────┐
 │ Re-optimize Plan │ ◄── AQE magic happens
 │ • Coalesce partitions │
 │ • Switch join strategy │
 │ • Handle skew │
 └─────────────┬─────────────┘
 │
 ▼
 ┌───────────────────────────┐
 │ Execute Stage 2 │
 │ (Optimized) │
 └───────────────────────────┘
Enabling AQE:
Enable AQE (default in Spark 3.2+)
spark.conf.set("spark.sql.adaptive.enabled", True)

Configure advisory partition size
spark.conf.set("spark.sql.adaptive.advisoryPartitionSizeInBytes", "128MB")
[bookmark: _Toc220524948]13.2 Dynamic Partition Coalescing
AQE automatically combines small partitions after shuffle:
Partition Coalescing:
┌───┐
│ Dynamic Partition Coalescing │
└───┘

Before AQE (200 shuffle partitions):
┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬─────┐
│5MB│2MB│1MB│3MB│1MB│2MB│8MB│1MB│1MB│1MB│ ... │ Many small partitions
└───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴─────┘

After AQE (coalesced to target size 64MB):
┌────────────┬────────────┬────────────┬────────────┐
│ 64MB │ 64MB │ 64MB │ 32MB │ Fewer, larger partitions
│ (combined) │ (combined) │ (combined) │ (remainder)│
└────────────┴────────────┴────────────┴────────────┘

Result: Fewer tasks, less scheduling overhead, better performance
Configuration:
Enable coalescing
spark.conf.set("spark.sql.adaptive.coalescePartitions.enabled", True)

Minimum partition size to coalesce
spark.conf.set("spark.sql.adaptive.coalescePartitions.minPartitionSize", "1MB")

Target size after coalescing
spark.conf.set("spark.sql.adaptive.advisoryPartitionSizeInBytes", "64MB")
[bookmark: _Toc220524949]13.3 Skew Join Optimization
AQE detects and handles data skew in joins:
Skew Problem:
┌───┐
│ Data Skew in Joins │
└───┘

Without Skew Handling:

Task 1: ██ (2 min)
Task 2: ██ (2 min)
Task 3: ████████████████████████████ (28 min) ◄── Skewed partition!
Task 4: ██ (2 min)

Total time: 28 min (limited by slowest task)
AQE Skew Handling:
┌───┐
│ AQE Skew Join Optimization │
└───┘

1. Detect skewed partition (partition 3 is 10x larger)

2. Split skewed partition into sub-partitions:

 Original: After Split:
 ┌───────────────────┐ ┌───────┐
 │ Partition 3 │ ──► │ 3a │
 │ (1000 records) │ ├───────┤
 │ Key: "popular" │ │ 3b │
 └───────────────────┘ ├───────┤
 │ 3c │
 └───────┘

3. Replicate corresponding rows from other table:

 Table A (skewed): Table B (replicated):
 ┌───────┐ ┌───────┐
 │ 3a │ ◄─────────────── │ B_3 │
 ├───────┤ ├───────┤
 │ 3b │ ◄─────────────── │ B_3 │ (replicated)
 ├───────┤ ├───────┤
 │ 3c │ ◄─────────────── │ B_3 │ (replicated)
 └───────┘ └───────┘

4. Result: Parallel processing of skewed key

Task 1: ██ (2 min)
Task 2: ██ (2 min)
Task 3a: ████ (4 min)
Task 3b: ████ (4 min)
Task 3c: ████ (4 min)
Task 4: ██ (2 min)

Total time: ~4 min (massive improvement!)
Configuration:
Enable skew join optimization
spark.conf.set("spark.sql.adaptive.skewJoin.enabled", True)

Skew detection threshold (partition is skewed if > factor * median)
spark.conf.set("spark.sql.adaptive.skewJoin.skewedPartitionFactor", "5")

Minimum size to be considered skewed
spark.conf.set("spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes", "256MB")
[bookmark: _Toc220524950]14. Design Implications and Best Practices
[bookmark: _Toc220524951]14.1 Architecture-Aware Development
Understanding Lazy Evaluation:
Transformations are lazy - no execution until action
df_transformed = (
 df.filter(col("status") == "active") # Lazy
 .select("id", "name", "value") # Lazy
 .groupBy("name") # Lazy
 .agg(sum("value")) # Lazy
)
Nothing executed yet!

Action triggers execution
result = df_transformed.collect() # NOW execution happens
Caching Strategy:
Cache when:
1. DataFrame is used multiple times
2. Computation is expensive
3. Data fits in memory

DON'T cache:
1. One-time use DataFrames
2. Very large datasets that don't fit in memory
3. Intermediate results in a single action chain

Good caching example
expensive_df = (
 spark.read.parquet("large_data/")
 .filter(col("year") == 2024)
 .join(lookup_df, "key")
)
expensive_df.cache()

Used multiple times
count = expensive_df.count()
summary = expensive_df.groupBy("category").count().collect()
expensive_df.write.parquet("output/")

Release when done
expensive_df.unpersist()
Broadcast Optimization:
from pyspark.sql.functions import broadcast

Small lookup table (< 10MB by default)
country_codes = spark.read.parquet("country_codes/") # 1MB

Broadcast to all executors (avoids shuffle)
result = large_df.join(broadcast(country_codes), "country_code")
[bookmark: _Toc220524952]14.2 Performance Anti-Patterns
Anti-Pattern 1: Unnecessary Actions
BAD: Multiple actions trigger multiple jobs
print(df.count()) # Job 1
print(df.first()) # Job 2
df.describe().show() # Job 3

GOOD: Collect needed data in fewer actions
stats = df.agg(
 count("*").alias("count"),
 first("*").alias("first_row")
).collect()[0]
Anti-Pattern 2: Collect Large Results
BAD: Collecting large data to driver
all_data = df.collect() # OOM risk!

GOOD: Process on cluster, collect only summaries
summary = df.groupBy("category").count().collect()

GOOD: Write large results to storage
df.write.parquet("output/")
Anti-Pattern 3: Python UDFs When Unnecessary
from pyspark.sql.functions import udf
from pyspark.sql.types import IntegerType

BAD: Python UDF (slow, requires serialization)
@udf(IntegerType())
def double_value(x):
 return x * 2

df.withColumn("doubled", double_value(col("value")))

GOOD: Use built-in functions (Catalyst optimized)
df.withColumn("doubled", col("value") * 2)

ACCEPTABLE: Pandas UDF when complex logic needed (vectorized)
from pyspark.sql.functions import pandas_udf
import pandas as pd

@pandas_udf(IntegerType())
def double_value_pandas(s: pd.Series) -> pd.Series:
 return s * 2

df.withColumn("doubled", double_value_pandas(col("value")))
Anti-Pattern 4: Skewed Joins Without Handling
BAD: Join with highly skewed key
result = large_df.join(other_df, "skewed_key") # One task takes forever

GOOD: Salt the key to distribute load
from pyspark.sql.functions import concat, lit, rand

num_salts = 10

Salt the large table
large_salted = large_df.withColumn(
 "salted_key",
 concat(col("skewed_key"), lit("_"), (rand() * num_salts).cast("int"))
)

Explode the small table
other_exploded = other_df.crossJoin(
 spark.range(num_salts).withColumnRenamed("id", "salt")
).withColumn(
 "salted_key",
 concat(col("skewed_key"), lit("_"), col("salt"))
)

Join on salted key
result = large_salted.join(other_exploded, "salted_key")
[bookmark: _Toc220524953]14.3 Production Considerations
Resource Configuration Guidelines:
Production SparkSession configuration
spark = (SparkSession.builder.appName("ProductionJob")

 # Executor sizing (4-5 cores is optimal)
 .config("spark.executor.cores", "4")
 .config("spark.executor.memory", "16g")
 .config("spark.executor.memoryOverhead", "2g")

 # Dynamic allocation for variable workloads
 .config("spark.dynamicAllocation.enabled", "true")
 .config("spark.dynamicAllocation.minExecutors", "2")
 .config("spark.dynamicAllocation.maxExecutors", "50")

 # Shuffle optimization
 .config("spark.sql.shuffle.partitions", "200")
 .config("spark.sql.adaptive.enabled", "true")
 .config("spark.sql.adaptive.coalescePartitions.enabled", "true")

 # Serialization
 .config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")

 # Speculation for stragglers
 .config("spark.speculation", "true").getOrCreate())

Monitoring Checklist:
	Metric
	Healthy Range
	Action if Outside

	GC Time
	< 10% of task time
	Increase memory, tune GC

	Shuffle Spill
	Minimal
	Increase memory fraction

	Task Duration Variance
	< 2x median
	Investigate skew

	Executor Utilization
	> 70%
	Adjust parallelism

	OOM Errors
	None
	Increase memory, reduce data

Debugging Workflow:
1. Check Spark UI → Jobs tab
 └─ Identify slow jobs

2. Check Stages tab
 └─ Find stages with high shuffle read/write
 └─ Identify skewed tasks (duration variance)

3. Check Executors tab
 └─ Memory utilization
 └─ GC time
 └─ Failed tasks

4. Check SQL tab (for DataFrame/SQL queries)
 └─ Physical plan
 └─ Per-operator metrics

5. Enable detailed logging if needed:
 spark.sparkContext.setLogLevel("DEBUG")
[bookmark: _Toc220524954]15. Related Documentation
The following documents provide deeper exploration of specific topics:
	Document
	Description
	Recommended Audience

	Cluster Sizing and Resource Planning Guide
	Detailed guidance on executor sizing, memory allocation, and cluster configuration
	Platform Engineers, DevOps

	DAG Optimization Patterns
	Common DAG anti-patterns and optimization strategies
	Data Engineers

	Shuffle Tuning Deep Dive
	Advanced shuffle configuration and optimization
	Performance Engineers

	Memory Management and GC Tuning
	JVM tuning, off-heap configuration, memory debugging
	Platform Engineers

	Spark UI and Debugging Guide
	Comprehensive guide to using Spark UI for troubleshooting
	All Spark Users

	Data Serialization Best Practices
	Kryo configuration, schema evolution, serialization optimization
	Data Engineers

	Partitioning Strategy Guide
	Partition sizing, custom partitioners, partition pruning
	Data Engineers

	Broadcast and Accumulator Patterns
	Efficient use of shared variables
	Data Engineers

	Adaptive Query Execution (AQE) Guide
	Deep dive into AQE features and configuration
	Data Engineers

	PySpark Performance Optimization
	Python-specific performance considerations
	Python Developers

[bookmark: _Toc220524955]16. Glossary
	Term
	Definition

	Action
	Operation that triggers computation and returns results (e.g., `collect()`, `count()`)

	AQE
	Adaptive Query Execution - runtime query optimization in Spark 3.0+

	Broadcast Variable
	Read-only variable cached on each executor to avoid shipping with tasks

	Catalyst
	Spark SQL's query optimizer

	DAG
	Directed Acyclic Graph - represents the computation lineage

	DataFrame
	Distributed collection of data organized into named columns

	Driver
	Process that runs the main() function and creates SparkContext

	Executor
	JVM process on worker nodes that runs tasks

	Job
	Parallel computation triggered by a Spark action

	Lazy Evaluation
	Delaying computation until an action requires results

	Narrow Transformation
	Transformation where each partition depends on at most one parent partition

	Partition
	Logical division of data distributed across the cluster

	RDD
	Resilient Distributed Dataset - fundamental data structure in Spark

	Shuffle
	Redistribution of data across partitions

	Stage
	Set of tasks that can run in parallel without shuffle

	Task
	Unit of work sent to an executor

	Transformation
	Operation that creates a new dataset from an existing one

	Tungsten
	Spark's execution engine for memory management and code generation

	Wide Transformation
	Transformation requiring data from multiple partitions

[bookmark: _Toc220524956]17. References
· Apache Spark Documentation - https://spark.apache.org/docs/latest/
· Spark: The Definitive Guide (Chambers & Zaharia, O'Reilly)
· Learning Spark, 2nd Edition (Damji et al., O'Reilly)
· Databricks Engineering Blog - https://www.databricks.com/blog
· Spark Performance Tuning Guide - https://spark.apache.org/docs/latest/tuning.html
· Catalyst Optimizer Deep Dive - https://databricks.com/blog/2015/04/13/deep-dive-into-spark-sqls-catalyst-optimizer.html
· Tungsten Execution Engine - https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
Document Information
	Attribute
	Value

	Document ID
	MTD-SPARK-ARCH-001

	Version
	1.0

	Status
	Final

	Classification
	Internal

	Owner
	Data Engineering Practice

	Last Updated
	January 2026

This document is proprietary to Mastech Digital and intended for internal use and client delivery.
Intended for internal use and client delivery	 	1
image1.png
#MAST=CH
DIGITAL

