PySpark Best Practices on Databricks
Document Information
Version: 1.0
Last Updated: 2025-01-24
Classification: Internal Use
Owner: Data Engineering Team
__
1. Executive Summary
This guide provides comprehensive best practices for developing PySpark applications on Databricks. It covers coding standards, performance optimization, memory management, and patterns for building production-grade data pipelines.
__
2. Coding Standards
2.1 Import Conventions
Standard import organization
1. Standard library imports
import os
import sys
from datetime import datetime, timedelta
from typing import List, Dict, Optional, Tuple

2. Third-party imports
import pandas as pd
import numpy as np

3. PySpark imports
from pyspark.sql import SparkSession, DataFrame, Window
from pyspark.sql import functions as F
from pyspark.sql.types import (
 StructType, StructField, StringType, IntegerType,
 DoubleType, TimestampType, ArrayType, MapType
)

4. Delta imports
from delta.tables import DeltaTable

5. Databricks imports
from databricks.sdk.runtime import dbutils

Note: Use 'F' alias for functions to avoid conflicts with Python builtins
Good: F.col(), F.sum(), F.max()
Avoid: from pyspark.sql.functions import * (pollutes namespace)

2.2 Naming Conventions
Variables and functions: snake_case
customer_df = spark.table("customers")
order_count = df.count()

def calculate_revenue(df: DataFrame) -> DataFrame:
 pass

Constants: UPPER_SNAKE_CASE
MAX_PARTITIONS = 200
DEFAULT_DATE_FORMAT = "yyyy-MM-dd"
BRONZE_PATH = "/mnt/data/bronze"

Classes: PascalCase
class CustomerTransformer:
 pass

DataFrame naming convention
raw_customers_df # Raw data
cleaned_customers_df # After cleaning
enriched_customers_df # After enrichment
final_customers_df # Final output

Column naming in transformations
df = df.withColumn("total_amount", ...) # Result column
df = df.withColumn("_temp_column", ...) # Temporary column (prefix with _)
df = df.withColumn("is_active", ...) # Boolean: is_, has_, can_
df = df.withColumn("customer_count", ...) # Aggregates: _count, _sum, _avg
df = df.withColumn("created_at", ...) # Timestamps: _at, _date, _time

2.3 Type Hints
from pyspark.sql import DataFrame, SparkSession
from typing import List, Dict, Optional, Callable

def read_bronze_table(
 spark: SparkSession,
 table_name: str,
 partition_filter: Optional[str] = None
) -> DataFrame:
 """
 Read data from bronze layer.

 Args:
 spark: Active SparkSession
 table_name: Fully qualified table name
 partition_filter: Optional partition predicate

 Returns:
 DataFrame containing the bronze data
 """
 df = spark.table(table_name)
 if partition_filter:
 df = df.filter(partition_filter)
 return df

def transform_to_silver(
 df: DataFrame,
 transformations: List[Callable[[DataFrame], DataFrame]]
) -> DataFrame:
 """Apply a list of transformations sequentially."""
 for transform in transformations:
 df = transform(df)
 return df

2.4 Documentation Standards
def process_customer_orders(
 orders_df: DataFrame,
 customers_df: DataFrame,
 start_date: str,
 end_date: str,
 include_cancelled: bool = False
) -> DataFrame:
 """
 Process customer orders by joining with customer data and applying filters.

 This function performs the following operations:
 1. Filters orders by date range
 2. Optionally filters out cancelled orders
 3. Joins with customer dimension
 4. Calculates order metrics

 Args:
 orders_df: DataFrame containing order transactions
 customers_df: DataFrame containing customer master data
 start_date: Start date for filtering (format: YYYY-MM-DD)
 end_date: End date for filtering (format: YYYY-MM-DD)
 include_cancelled: Whether to include cancelled orders (default: False)

 Returns:
 DataFrame with processed orders including:
 - order_id: Unique order identifier
 - customer_name: Customer full name
 - total_amount: Order total
 - order_status: Current order status

 Raises:
 ValueError: If start_date is after end_date

 Example:
 >>> result = process_customer_orders(
 ... orders_df, customers_df,
 ... "2025-01-01", "2025-01-31"
 ...)
 >>> result.show()
 """
 pass

__
3. DataFrame Operations
3.1 Column Selection Best Practices
GOOD: Select specific columns
df.select("col1", "col2", "col3")
df.select(F.col("col1"), F.col("col2"))

GOOD: Use list for dynamic column selection
columns_needed = ["customer_id", "order_date", "amount"]
df.select(*columns_needed)

AVOID: Select all with transformation (causes full scan)
df.select("*", F.lit(1).alias("new_col"))

GOOD: Add column then select
df = df.withColumn("new_col", F.lit(1))
df = df.select("col1", "col2", "new_col")

GOOD: Drop columns you don't need early
df = df.drop("unnecessary_col1", "unnecessary_col2")

3.2 Filtering Best Practices
GOOD: Filter early to reduce data volume
df = df.filter(F.col("date") >= "2025-01-01")
df = df.filter(F.col("status") == "ACTIVE")

GOOD: Combine filters efficiently
df = df.filter(
 (F.col("date") >= "2025-01-01") &
 (F.col("status") == "ACTIVE") &
 (F.col("amount") > 0)
)

AVOID: Multiple separate filter calls (same logical plan, but harder to read)
df = df.filter(F.col("date") >= "2025-01-01")
df = df.filter(F.col("status") == "ACTIVE")
df = df.filter(F.col("amount") > 0)

GOOD: Use isin() for multiple values
valid_statuses = ["ACTIVE", "PENDING", "PROCESSING"]
df = df.filter(F.col("status").isin(valid_statuses))

GOOD: Use between() for ranges
df = df.filter(F.col("amount").between(100, 1000))

GOOD: Handle nulls explicitly
df = df.filter(F.col("email").isNotNull())
df = df.filter(F.coalesce(F.col("is_active"), F.lit(False)))

3.3 Transformations Best Practices
GOOD: Chain transformations
result_df = (
 raw_df
 .filter(F.col("date") >= "2025-01-01")
 .withColumn("year", F.year("date"))
 .withColumn("amount_cents", (F.col("amount") * 100).cast("long"))
 .withColumn("customer_name", F.upper(F.trim(F.col("customer_name"))))
 .drop("temp_column")
 .select("customer_id", "customer_name", "year", "amount_cents")
)

GOOD: Use when/otherwise for conditional logic
df = df.withColumn(
 "customer_segment",
 F.when(F.col("total_spend") >= 10000, "PLATINUM")
 .when(F.col("total_spend") >= 5000, "GOLD")
 .when(F.col("total_spend") >= 1000, "SILVER")
 .otherwise("BRONZE")
)

GOOD: Use coalesce for null handling
df = df.withColumn(
 "display_name",
 F.coalesce(F.col("preferred_name"), F.col("first_name"), F.lit("Unknown"))
)

AVOID: Using UDFs for simple operations (built-in functions are optimized)
@udf(StringType())
def upper_name(name):
return name.upper() if name else None
df = df.withColumn("name", upper_name(F.col("name")))

GOOD: Use built-in function instead
df = df.withColumn("name", F.upper(F.col("name")))

3.4 Aggregation Best Practices
GOOD: Explicit aggregation with clear aliases
summary_df = (
 orders_df
 .groupBy("customer_id", "order_date")
 .agg(
 F.count("*").alias("order_count"),
 F.sum("amount").alias("total_amount"),
 F.avg("amount").alias("avg_amount"),
 F.min("amount").alias("min_amount"),
 F.max("amount").alias("max_amount"),
 F.countDistinct("product_id").alias("unique_products"),
 F.collect_set("product_id").alias("product_ids")
)
)

GOOD: Use window functions for running calculations
window_spec = Window.partitionBy("customer_id").orderBy("order_date")

df = df.withColumn("running_total", F.sum("amount").over(window_spec))
df = df.withColumn("order_rank", F.row_number().over(window_spec))
df = df.withColumn("prev_amount", F.lag("amount", 1).over(window_spec))

GOOD: Combine window specs when possible
window_spec = (
 Window
 .partitionBy("customer_id")
 .orderBy("order_date")
 .rowsBetween(Window.unboundedPreceding, Window.currentRow)
)

df = (df
 .withColumn("running_total", F.sum("amount").over(window_spec))
 .withColumn("running_count", F.count("*").over(window_spec))
 .withColumn("running_avg", F.avg("amount").over(window_spec))
)

__
4. Join Optimization
4.1 Join Types and Strategies
GOOD: Broadcast small tables (< 10MB default, configurable)
Automatic broadcast when one side is small
result = large_df.join(small_df, "key_column")

GOOD: Explicit broadcast hint for larger dimension tables
result = large_df.join(F.broadcast(medium_df), "key_column")

Check broadcast threshold
print(spark.conf.get("spark.sql.autoBroadcastJoinThreshold")) # Default: 10MB

Increase for larger dimension tables
spark.conf.set("spark.sql.autoBroadcastJoinThreshold", "100m")

GOOD: Specify join type explicitly
result = orders.join(customers, "customer_id", "left")
result = orders.join(customers, "customer_id", "inner")
result = orders.join(customers, "customer_id", "left_anti") # Orders without customers

GOOD: Use column expressions for non-matching column names
result = orders.join(
 customers,
 orders.customer_id == customers.cust_id,
 "left"
)

GOOD: Select columns after join to avoid duplicates
result = orders.join(
 customers,
 orders.customer_id == customers.cust_id,
 "left"
).select(
 orders["*"],
 customers.customer_name,
 customers.customer_segment
)

4.2 Handling Skewed Joins
Symptom: One or few tasks take much longer than others
Diagnosis: Uneven key distribution

Solution 1: Adaptive Query Execution (AQE) - Automatic
spark.conf.set("spark.sql.adaptive.enabled", "true")
spark.conf.set("spark.sql.adaptive.skewJoin.enabled", "true")

Solution 2: Salting technique for manual control
def salted_join(large_df, small_df, join_key, num_salts=10):
 """
 Perform salted join to handle skewed keys.
 """
 # Add salt to large table
 large_salted = large_df.withColumn(
 "_salt",
 (F.rand() * num_salts).cast("int")
)

 # Explode small table with all salt values
 small_exploded = small_df.crossJoin(
 spark.range(num_salts).withColumnRenamed("id", "_salt")
)

 # Join on key + salt
 result = large_salted.join(
 small_exploded,
 [join_key, "_salt"],
 "inner"
).drop("_salt")

 return result

Solution 3: Isolate hot keys
def handle_hot_keys(df, join_df, join_key, hot_keys):
 """
 Handle hot keys separately with broadcast join.
 """
 # Split data
 hot_df = df.filter(F.col(join_key).isin(hot_keys))
 normal_df = df.filter(~F.col(join_key).isin(hot_keys))

 # Broadcast join for hot keys
 hot_result = hot_df.join(F.broadcast(join_df), join_key)

 # Regular join for normal keys
 normal_result = normal_df.join(join_df, join_key)

 # Union results
 return hot_result.unionByName(normal_result)

4.3 Join Column Optimization
GOOD: Ensure join columns have same types
df1 = df1.withColumn("key", F.col("key").cast("string"))
df2 = df2.withColumn("key", F.col("key").cast("string"))
result = df1.join(df2, "key")

GOOD: Create composite key for multi-column joins
df1 = df1.withColumn(
 "_join_key",
 F.concat_ws("||", F.col("col1"), F.col("col2"), F.col("col3"))
)
df2 = df2.withColumn(
 "_join_key",
 F.concat_ws("||", F.col("col1"), F.col("col2"), F.col("col3"))
)
result = df1.join(df2, "_join_key").drop("_join_key")

__
5. Performance Optimization
5.1 Partition Management
Check current partitions
print(f"Number of partitions: {df.rdd.getNumPartitions()}")

GOOD: Repartition for parallelism (shuffle)
df = df.repartition(200) # Increase partitions
df = df.repartition("customer_id") # Partition by column

GOOD: Coalesce to reduce partitions (no shuffle)
df = df.coalesce(10) # Reduce partitions

GOOD: Repartition before write for optimal file sizes
(df
 .repartition(100) # Control output file count
 .write
 .format("delta")
 .mode("overwrite")
 .saveAsTable("output_table")
)

GOOD: Use spark.sql.shuffle.partitions
spark.conf.set("spark.sql.shuffle.partitions", "auto") # AQE auto-tune
Or set explicitly based on data size
spark.conf.set("spark.sql.shuffle.partitions", "200")

5.2 Caching and Persistence
GOOD: Cache DataFrames used multiple times
df = spark.table("large_table").filter(F.col("date") >= "2025-01-01")

Cache with default storage level
df.cache()

Or with specific storage level
from pyspark.storagelevel import StorageLevel
df.persist(StorageLevel.MEMORY_AND_DISK)

Force caching with action
df.count()

Use the cached DataFrame
result1 = df.groupBy("col1").count()
result2 = df.groupBy("col2").sum("amount")

IMPORTANT: Unpersist when done
df.unpersist()

GOOD: Use caching in a context manager pattern
class CachedDataFrame:
 def __init__(self, df):
 self.df = df

 def __enter__(self):
 self.df.cache()
 self.df.count() # Materialize cache
 return self.df

 def __exit__(self, *args):
 self.df.unpersist()

Usage
with CachedDataFrame(large_df) as df:
 result1 = df.groupBy("col1").count()
 result2 = df.groupBy("col2").sum("amount")

5.3 Avoiding Common Anti-Patterns
AVOID: Collecting large DataFrames to driver
bad_pattern = df.collect() # Can cause OOM

GOOD: Use limit or take
sample_rows = df.take(100)
sample_rows = df.limit(100).collect()

AVOID: Using Python UDFs for simple operations
@F.udf(StringType())
def concat_names(first, last):
return f"{first} {last}"

GOOD: Use built-in functions
df = df.withColumn("full_name", F.concat_ws(" ", "first_name", "last_name"))

AVOID: Iterating over rows
for row in df.collect(): # Never do this for large data
process(row)

GOOD: Use DataFrame transformations
df = df.withColumn("processed", F.some_function(F.col("column")))

AVOID: Using count() in conditions repeatedly
if df.count() > 0: # Triggers full computation
if df.count() > 100: # Triggers again!

GOOD: Cache and reuse count
count = df.cache().count()
if count > 0:
 if count > 100:
 pass

AVOID: Creating DataFrames in loops
for item in items:
df = spark.createDataFrame([item]) # Creates many small DFs

GOOD: Create single DataFrame
df = spark.createDataFrame(items)

5.4 Catalyst Optimizer Tips
GOOD: Let Catalyst optimize - don't over-specify
The optimizer will reorder operations for efficiency

GOOD: Use explain() to understand execution plan
df.explain() # Simple plan
df.explain(True) # Extended plan
df.explain("formatted") # Formatted plan
df.explain("cost") # Cost-based plan

GOOD: Check for partition pruning
spark.sql("""
 SELECT * FROM partitioned_table
 WHERE date_partition = '2025-01-24'
""").explain()
Look for: "PartitionFilters: [isnotnull(date_partition), (date_partition = 2025-01-24)]"

GOOD: Enable AQE for runtime optimization
spark.conf.set("spark.sql.adaptive.enabled", "true")
spark.conf.set("spark.sql.adaptive.coalescePartitions.enabled", "true")
spark.conf.set("spark.sql.adaptive.skewJoin.enabled", "true")

__
6. Error Handling
6.1 Robust Pipeline Pattern
from typing import Tuple, Optional
import logging

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class PipelineResult:
 def __init__(self, success: bool, df: Optional[DataFrame] = None,
 error: Optional[str] = None, metrics: Optional[Dict] = None):
 self.success = success
 self.df = df
 self.error = error
 self.metrics = metrics or {}

def safe_transform(
 df: DataFrame,
 transform_func,
 step_name: str
) -> Tuple[DataFrame, bool, Optional[str]]:
 """
 Safely apply a transformation with error handling.
 """
 try:
 logger.info(f"Starting step: {step_name}")
 result_df = transform_func(df)

 # Validate output
 if result_df is None:
 raise ValueError(f"Transform returned None")

 # Force evaluation to catch errors
 count = result_df.count()
 logger.info(f"Step {step_name} completed. Rows: {count}")

 return result_df, True, None

 except Exception as e:
 error_msg = f"Error in {step_name}: {str(e)}"
 logger.error(error_msg)
 return df, False, error_msg

def run_pipeline(source_table: str, target_table: str) -> PipelineResult:
 """
 Run complete ETL pipeline with error handling.
 """
 metrics = {"start_time": datetime.now().isoformat()}

 try:
 # Read source
 df = spark.table(source_table)
 metrics["input_count"] = df.count()

 # Apply transformations
 transformations = [
 (clean_data, "clean_data"),
 (apply_business_rules, "apply_business_rules"),
 (calculate_aggregates, "calculate_aggregates"),
]

 for transform_func, step_name in transformations:
 df, success, error = safe_transform(df, transform_func, step_name)
 if not success:
 return PipelineResult(False, error=error, metrics=metrics)

 # Write output
 (df.write
 .format("delta")
 .mode("overwrite")
 .saveAsTable(target_table))

 metrics["output_count"] = df.count()
 metrics["end_time"] = datetime.now().isoformat()

 return PipelineResult(True, df=df, metrics=metrics)

 except Exception as e:
 logger.error(f"Pipeline failed: {str(e)}")
 return PipelineResult(False, error=str(e), metrics=metrics)

6.2 Data Quality Checks
class DataQualityChecker:
 def __init__(self, df: DataFrame):
 self.df = df
 self.checks = []
 self.results = []

 def check_not_null(self, columns: List[str]) -> 'DataQualityChecker':
 """Check that columns have no null values."""
 for col in columns:
 null_count = self.df.filter(F.col(col).isNull()).count()
 self.results.append({
 "check": f"not_null({col})",
 "passed": null_count == 0,
 "details": f"Found {null_count} nulls"
 })
 return self

 def check_unique(self, columns: List[str]) -> 'DataQualityChecker':
 """Check that column combination is unique."""
 total = self.df.count()
 distinct = self.df.select(columns).distinct().count()
 self.results.append({
 "check": f"unique({', '.join(columns)})",
 "passed": total == distinct,
 "details": f"Total: {total}, Distinct: {distinct}"
 })
 return self

 def check_range(self, column: str, min_val, max_val) -> 'DataQualityChecker':
 """Check that values are within range."""
 out_of_range = self.df.filter(
 (F.col(column) < min_val) | (F.col(column) > max_val)
).count()
 self.results.append({
 "check": f"range({column}, {min_val}, {max_val})",
 "passed": out_of_range == 0,
 "details": f"Found {out_of_range} out of range"
 })
 return self

 def check_referential_integrity(
 self, column: str, ref_df: DataFrame, ref_column: str
) -> 'DataQualityChecker':
 """Check foreign key relationship."""
 orphans = self.df.join(
 ref_df.select(F.col(ref_column).alias("_ref")),
 self.df[column] == F.col("_ref"),
 "left_anti"
).count()
 self.results.append({
 "check": f"fk({column} -> {ref_column})",
 "passed": orphans == 0,
 "details": f"Found {orphans} orphan records"
 })
 return self

 def validate(self, fail_on_error: bool = True) -> List[Dict]:
 """Run all checks and optionally fail on errors."""
 failures = [r for r in self.results if not r["passed"]]
 if failures and fail_on_error:
 raise ValueError(f"Data quality checks failed: {failures}")
 return self.results

Usage
checker = (DataQualityChecker(df)
 .check_not_null(["customer_id", "order_date"])
 .check_unique(["order_id"])
 .check_range("amount", 0, 1000000)
 .check_referential_integrity("customer_id", customers_df, "customer_id")
)
results = checker.validate()

__
7. Production Patterns
7.1 Incremental Processing
def incremental_load(
 source_table: str,
 target_table: str,
 watermark_column: str,
 checkpoint_table: str
) -> int:
 """
 Perform incremental load based on watermark.
 """
 # Get last watermark
 try:
 last_watermark = spark.sql(f"""
 SELECT MAX(watermark_value) as wm
 FROM {checkpoint_table}
 WHERE table_name = '{target_table}'
 """).collect()[0]["wm"]
 except:
 last_watermark = "1900-01-01 00:00:00"

 # Read incremental data
 new_data = spark.sql(f"""
 SELECT *
 FROM {source_table}
 WHERE {watermark_column} > '{last_watermark}'
 """)

 row_count = new_data.count()

 if row_count > 0:
 # Apply transformations
 transformed = transform_data(new_data)

 # Merge into target
 target = DeltaTable.forName(spark, target_table)
 (target.alias("target")
 .merge(transformed.alias("source"), "target.id = source.id")
 .whenMatchedUpdateAll()
 .whenNotMatchedInsertAll()
 .execute())

 # Update watermark
 new_watermark = new_data.agg(F.max(watermark_column)).collect()[0][0]
 spark.sql(f"""
 INSERT INTO {checkpoint_table}
 VALUES ('{target_table}', '{new_watermark}', current_timestamp())
 """)

 return row_count

7.2 Idempotent Operations
def idempotent_write(
 df: DataFrame,
 target_table: str,
 key_columns: List[str],
 partition_column: Optional[str] = None
) -> None:
 """
 Write data idempotently using MERGE.
 """
 # Check if target exists
 if spark.catalog.tableExists(target_table):
 target = DeltaTable.forName(spark, target_table)

 # Build merge condition
 merge_condition = " AND ".join([
 f"target.{col} = source.{col}" for col in key_columns
])

 # Merge
 (target.alias("target")
 .merge(df.alias("source"), merge_condition)
 .whenMatchedUpdateAll()
 .whenNotMatchedInsertAll()
 .execute())
 else:
 # Create table on first run
 writer = df.write.format("delta")
 if partition_column:
 writer = writer.partitionBy(partition_column)
 writer.saveAsTable(target_table)

7.3 Parallel Processing
from concurrent.futures import ThreadPoolExecutor, as_completed

def process_partitions_parallel(
 table_name: str,
 partitions: List[str],
 process_func,
 max_workers: int = 4
) -> List[Dict]:
 """
 Process table partitions in parallel.
 """
 results = []

 with ThreadPoolExecutor(max_workers=max_workers) as executor:
 futures = {
 executor.submit(process_func, table_name, partition): partition
 for partition in partitions
 }

 for future in as_completed(futures):
 partition = futures[future]
 try:
 result = future.result()
 results.append({
 "partition": partition,
 "status": "success",
 "result": result
 })
 except Exception as e:
 results.append({
 "partition": partition,
 "status": "error",
 "error": str(e)
 })

 return results

__
8. Testing Best Practices
8.1 Unit Testing with pytest
test_transformations.py
import pytest
from pyspark.sql import SparkSession
from pyspark.sql import functions as F
from my_module import clean_customer_data, calculate_metrics

@pytest.fixture(scope="session")
def spark():
 """Create SparkSession for testing."""
 return (SparkSession.builder
 .master("local[2]")
 .appName("unit-tests")
 .config("spark.sql.shuffle.partitions", "2")
 .getOrCreate())

@pytest.fixture
def sample_customers(spark):
 """Create sample customer DataFrame."""
 data = [
 ("C001", "John Doe", "john@email.com", 100.0),
 ("C002", "Jane Smith", "jane@email.com", 200.0),
 ("C003", None, "test@email.com", 50.0), # Null name
]
 return spark.createDataFrame(data, ["id", "name", "email", "amount"])

class TestCleanCustomerData:
 def test_removes_null_names(self, spark, sample_customers):
 result = clean_customer_data(sample_customers)
 assert result.filter(F.col("name").isNull()).count() == 0

 def test_preserves_valid_records(self, spark, sample_customers):
 result = clean_customer_data(sample_customers)
 assert result.count() == 2

 def test_output_schema(self, spark, sample_customers):
 result = clean_customer_data(sample_customers)
 expected_columns = {"id", "name", "email", "amount", "cleaned_at"}
 assert set(result.columns) == expected_columns

class TestCalculateMetrics:
 def test_sum_calculation(self, spark, sample_customers):
 result = calculate_metrics(sample_customers)
 total = result.collect()[0]["total_amount"]
 assert total == 350.0 # 100 + 200 + 50

 def test_count_calculation(self, spark, sample_customers):
 result = calculate_metrics(sample_customers)
 count = result.collect()[0]["customer_count"]
 assert count == 3

8.2 Integration Testing
test_pipeline_integration.py
import pytest
from delta.tables import DeltaTable

class TestEndToEndPipeline:
 @pytest.fixture(autouse=True)
 def setup_teardown(self, spark):
 """Setup test tables before each test, cleanup after."""
 # Setup
 self.test_db = "test_db"
 spark.sql(f"CREATE DATABASE IF NOT EXISTS {self.test_db}")

 yield

 # Teardown
 spark.sql(f"DROP DATABASE IF EXISTS {self.test_db} CASCADE")

 def test_full_pipeline(self, spark):
 # Arrange
 source_data = [
 ("O001", "C001", "2025-01-24", 100.0),
 ("O002", "C001", "2025-01-24", 200.0),
]
 source_df = spark.createDataFrame(
 source_data, ["order_id", "customer_id", "order_date", "amount"]
)
 source_df.write.saveAsTable(f"{self.test_db}.source_orders")

 # Act
 from my_pipeline import run_pipeline
 result = run_pipeline(
 source_table=f"{self.test_db}.source_orders",
 target_table=f"{self.test_db}.target_orders"
)

 # Assert
 assert result.success
 target_df = spark.table(f"{self.test_db}.target_orders")
 assert target_df.count() == 2

__
9. Configuration Management
9.1 Configuration Class
from dataclasses import dataclass
from typing import Optional
import json

@dataclass
class PipelineConfig:
 """Configuration for data pipeline."""

 # Source configuration
 source_table: str
 source_filter: Optional[str] = None

 # Target configuration
 target_table: str
 write_mode: str = "merge"
 partition_columns: Optional[list] = None

 # Processing configuration
 batch_size: int = 100000
 parallelism: int = 200
 enable_caching: bool = True

 # Quality thresholds
 min_row_count: int = 0
 max_null_percentage: float = 0.05

 @classmethod
 def from_json(cls, json_path: str) -> 'PipelineConfig':
 """Load configuration from JSON file."""
 with open(json_path) as f:
 config_dict = json.load(f)
 return cls(**config_dict)

 @classmethod
 def from_widget(cls, dbutils) -> 'PipelineConfig':
 """Load configuration from Databricks widgets."""
 return cls(
 source_table=dbutils.widgets.get("source_table"),
 target_table=dbutils.widgets.get("target_table"),
 write_mode=dbutils.widgets.get("write_mode"),
 batch_size=int(dbutils.widgets.get("batch_size")),
)

Usage
config = PipelineConfig(
 source_table="bronze.raw_orders",
 target_table="silver.clean_orders",
 partition_columns=["order_date"],
 batch_size=50000
)

__
10. Logging and Monitoring
10.1 Structured Logging
import logging
import json
from datetime import datetime

class StructuredLogger:
 def __init__(self, name: str, job_id: str = None):
 self.logger = logging.getLogger(name)
 self.logger.setLevel(logging.INFO)
 self.job_id = job_id or datetime.now().strftime("%Y%m%d_%H%M%S")
 self.metrics = {}

 def log_event(self, event_type: str, message: str, **kwargs):
 """Log structured event."""
 log_record = {
 "timestamp": datetime.now().isoformat(),
 "job_id": self.job_id,
 "event_type": event_type,
 "message": message,
 **kwargs
 }
 self.logger.info(json.dumps(log_record))

 def log_metric(self, metric_name: str, value: float, **tags):
 """Log a metric value."""
 self.metrics[metric_name] = value
 self.log_event("metric", f"{metric_name}={value}", metric_name=metric_name, value=value, **tags)

 def log_stage_start(self, stage_name: str):
 """Log start of a pipeline stage."""
 self.log_event("stage_start", f"Starting {stage_name}", stage=stage_name)

 def log_stage_end(self, stage_name: str, row_count: int = None, duration_ms: int = None):
 """Log end of a pipeline stage."""
 self.log_event(
 "stage_end",
 f"Completed {stage_name}",
 stage=stage_name,
 row_count=row_count,
 duration_ms=duration_ms
)

Usage
logger = StructuredLogger("CustomerPipeline")
logger.log_stage_start("data_ingestion")
... process data ...
logger.log_stage_end("data_ingestion", row_count=10000, duration_ms=5000)
logger.log_metric("records_processed", 10000, table="customers")

__
Document Control:
Version: 1.0
Created: 2025-01-24
Last Review: 2025-01-24
Next Review: 2025-04-24

