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1. Executive Summary
This guide provides comprehensive best practices for developing PySpark applications on Databricks. It covers coding standards, performance optimization, memory management, and patterns for building production-grade data pipelines.
________________________________________________________________________________
2. Coding Standards
2.1 Import Conventions
# Standard import organization
# 1. Standard library imports
import os
import sys
from datetime import datetime, timedelta
from typing import List, Dict, Optional, Tuple

# 2. Third-party imports
import pandas as pd
import numpy as np

# 3. PySpark imports
from pyspark.sql import SparkSession, DataFrame, Window
from pyspark.sql import functions as F
from pyspark.sql.types import (
    StructType, StructField, StringType, IntegerType,
    DoubleType, TimestampType, ArrayType, MapType
)

# 4. Delta imports
from delta.tables import DeltaTable

# 5. Databricks imports
from databricks.sdk.runtime import dbutils

# Note: Use 'F' alias for functions to avoid conflicts with Python builtins
# Good: F.col(), F.sum(), F.max()
# Avoid: from pyspark.sql.functions import * (pollutes namespace)

2.2 Naming Conventions
# Variables and functions: snake_case
customer_df = spark.table("customers")
order_count = df.count()

def calculate_revenue(df: DataFrame) -> DataFrame:
    pass

# Constants: UPPER_SNAKE_CASE
MAX_PARTITIONS = 200
DEFAULT_DATE_FORMAT = "yyyy-MM-dd"
BRONZE_PATH = "/mnt/data/bronze"

# Classes: PascalCase
class CustomerTransformer:
    pass

# DataFrame naming convention
raw_customers_df      # Raw data
cleaned_customers_df  # After cleaning
enriched_customers_df # After enrichment
final_customers_df    # Final output

# Column naming in transformations
df = df.withColumn("total_amount", ...)      # Result column
df = df.withColumn("_temp_column", ...)      # Temporary column (prefix with _)
df = df.withColumn("is_active", ...)         # Boolean: is_, has_, can_
df = df.withColumn("customer_count", ...)    # Aggregates: _count, _sum, _avg
df = df.withColumn("created_at", ...)        # Timestamps: _at, _date, _time

2.3 Type Hints
from pyspark.sql import DataFrame, SparkSession
from typing import List, Dict, Optional, Callable

def read_bronze_table(
    spark: SparkSession,
    table_name: str,
    partition_filter: Optional[str] = None
) -> DataFrame:
    """
    Read data from bronze layer.

    Args:
        spark: Active SparkSession
        table_name: Fully qualified table name
        partition_filter: Optional partition predicate

    Returns:
        DataFrame containing the bronze data
    """
    df = spark.table(table_name)
    if partition_filter:
        df = df.filter(partition_filter)
    return df

def transform_to_silver(
    df: DataFrame,
    transformations: List[Callable[[DataFrame], DataFrame]]
) -> DataFrame:
    """Apply a list of transformations sequentially."""
    for transform in transformations:
        df = transform(df)
    return df

2.4 Documentation Standards
def process_customer_orders(
    orders_df: DataFrame,
    customers_df: DataFrame,
    start_date: str,
    end_date: str,
    include_cancelled: bool = False
) -> DataFrame:
    """
    Process customer orders by joining with customer data and applying filters.

    This function performs the following operations:
    1. Filters orders by date range
    2. Optionally filters out cancelled orders
    3. Joins with customer dimension
    4. Calculates order metrics

    Args:
        orders_df: DataFrame containing order transactions
        customers_df: DataFrame containing customer master data
        start_date: Start date for filtering (format: YYYY-MM-DD)
        end_date: End date for filtering (format: YYYY-MM-DD)
        include_cancelled: Whether to include cancelled orders (default: False)

    Returns:
        DataFrame with processed orders including:
        - order_id: Unique order identifier
        - customer_name: Customer full name
        - total_amount: Order total
        - order_status: Current order status

    Raises:
        ValueError: If start_date is after end_date

    Example:
        >>> result = process_customer_orders(
        ...     orders_df, customers_df,
        ...     "2025-01-01", "2025-01-31"
        ... )
        >>> result.show()
    """
    pass

________________________________________________________________________________
3. DataFrame Operations
3.1 Column Selection Best Practices
# GOOD: Select specific columns
df.select("col1", "col2", "col3")
df.select(F.col("col1"), F.col("col2"))

# GOOD: Use list for dynamic column selection
columns_needed = ["customer_id", "order_date", "amount"]
df.select(*columns_needed)

# AVOID: Select all with transformation (causes full scan)
# df.select("*", F.lit(1).alias("new_col"))

# GOOD: Add column then select
df = df.withColumn("new_col", F.lit(1))
df = df.select("col1", "col2", "new_col")

# GOOD: Drop columns you don't need early
df = df.drop("unnecessary_col1", "unnecessary_col2")

3.2 Filtering Best Practices
# GOOD: Filter early to reduce data volume
df = df.filter(F.col("date") >= "2025-01-01")
df = df.filter(F.col("status") == "ACTIVE")

# GOOD: Combine filters efficiently
df = df.filter(
    (F.col("date") >= "2025-01-01") &
    (F.col("status") == "ACTIVE") &
    (F.col("amount") > 0)
)

# AVOID: Multiple separate filter calls (same logical plan, but harder to read)
# df = df.filter(F.col("date") >= "2025-01-01")
# df = df.filter(F.col("status") == "ACTIVE")
# df = df.filter(F.col("amount") > 0)

# GOOD: Use isin() for multiple values
valid_statuses = ["ACTIVE", "PENDING", "PROCESSING"]
df = df.filter(F.col("status").isin(valid_statuses))

# GOOD: Use between() for ranges
df = df.filter(F.col("amount").between(100, 1000))

# GOOD: Handle nulls explicitly
df = df.filter(F.col("email").isNotNull())
df = df.filter(F.coalesce(F.col("is_active"), F.lit(False)))

3.3 Transformations Best Practices
# GOOD: Chain transformations
result_df = (
    raw_df
    .filter(F.col("date") >= "2025-01-01")
    .withColumn("year", F.year("date"))
    .withColumn("amount_cents", (F.col("amount") * 100).cast("long"))
    .withColumn("customer_name", F.upper(F.trim(F.col("customer_name"))))
    .drop("temp_column")
    .select("customer_id", "customer_name", "year", "amount_cents")
)

# GOOD: Use when/otherwise for conditional logic
df = df.withColumn(
    "customer_segment",
    F.when(F.col("total_spend") >= 10000, "PLATINUM")
    .when(F.col("total_spend") >= 5000, "GOLD")
    .when(F.col("total_spend") >= 1000, "SILVER")
    .otherwise("BRONZE")
)

# GOOD: Use coalesce for null handling
df = df.withColumn(
    "display_name",
    F.coalesce(F.col("preferred_name"), F.col("first_name"), F.lit("Unknown"))
)

# AVOID: Using UDFs for simple operations (built-in functions are optimized)
# @udf(StringType())
# def upper_name(name):
#     return name.upper() if name else None
# df = df.withColumn("name", upper_name(F.col("name")))

# GOOD: Use built-in function instead
df = df.withColumn("name", F.upper(F.col("name")))

3.4 Aggregation Best Practices
# GOOD: Explicit aggregation with clear aliases
summary_df = (
    orders_df
    .groupBy("customer_id", "order_date")
    .agg(
        F.count("*").alias("order_count"),
        F.sum("amount").alias("total_amount"),
        F.avg("amount").alias("avg_amount"),
        F.min("amount").alias("min_amount"),
        F.max("amount").alias("max_amount"),
        F.countDistinct("product_id").alias("unique_products"),
        F.collect_set("product_id").alias("product_ids")
    )
)

# GOOD: Use window functions for running calculations
window_spec = Window.partitionBy("customer_id").orderBy("order_date")

df = df.withColumn("running_total", F.sum("amount").over(window_spec))
df = df.withColumn("order_rank", F.row_number().over(window_spec))
df = df.withColumn("prev_amount", F.lag("amount", 1).over(window_spec))

# GOOD: Combine window specs when possible
window_spec = (
    Window
    .partitionBy("customer_id")
    .orderBy("order_date")
    .rowsBetween(Window.unboundedPreceding, Window.currentRow)
)

df = (df
    .withColumn("running_total", F.sum("amount").over(window_spec))
    .withColumn("running_count", F.count("*").over(window_spec))
    .withColumn("running_avg", F.avg("amount").over(window_spec))
)

________________________________________________________________________________
4. Join Optimization
4.1 Join Types and Strategies
# GOOD: Broadcast small tables (< 10MB default, configurable)
# Automatic broadcast when one side is small
result = large_df.join(small_df, "key_column")

# GOOD: Explicit broadcast hint for larger dimension tables
result = large_df.join(F.broadcast(medium_df), "key_column")

# Check broadcast threshold
print(spark.conf.get("spark.sql.autoBroadcastJoinThreshold"))  # Default: 10MB

# Increase for larger dimension tables
spark.conf.set("spark.sql.autoBroadcastJoinThreshold", "100m")

# GOOD: Specify join type explicitly
result = orders.join(customers, "customer_id", "left")
result = orders.join(customers, "customer_id", "inner")
result = orders.join(customers, "customer_id", "left_anti")  # Orders without customers

# GOOD: Use column expressions for non-matching column names
result = orders.join(
    customers,
    orders.customer_id == customers.cust_id,
    "left"
)

# GOOD: Select columns after join to avoid duplicates
result = orders.join(
    customers,
    orders.customer_id == customers.cust_id,
    "left"
).select(
    orders["*"],
    customers.customer_name,
    customers.customer_segment
)

4.2 Handling Skewed Joins
# Symptom: One or few tasks take much longer than others
# Diagnosis: Uneven key distribution

# Solution 1: Adaptive Query Execution (AQE) - Automatic
spark.conf.set("spark.sql.adaptive.enabled", "true")
spark.conf.set("spark.sql.adaptive.skewJoin.enabled", "true")

# Solution 2: Salting technique for manual control
def salted_join(large_df, small_df, join_key, num_salts=10):
    """
    Perform salted join to handle skewed keys.
    """
    # Add salt to large table
    large_salted = large_df.withColumn(
        "_salt",
        (F.rand() * num_salts).cast("int")
    )

    # Explode small table with all salt values
    small_exploded = small_df.crossJoin(
        spark.range(num_salts).withColumnRenamed("id", "_salt")
    )

    # Join on key + salt
    result = large_salted.join(
        small_exploded,
        [join_key, "_salt"],
        "inner"
    ).drop("_salt")

    return result

# Solution 3: Isolate hot keys
def handle_hot_keys(df, join_df, join_key, hot_keys):
    """
    Handle hot keys separately with broadcast join.
    """
    # Split data
    hot_df = df.filter(F.col(join_key).isin(hot_keys))
    normal_df = df.filter(~F.col(join_key).isin(hot_keys))

    # Broadcast join for hot keys
    hot_result = hot_df.join(F.broadcast(join_df), join_key)

    # Regular join for normal keys
    normal_result = normal_df.join(join_df, join_key)

    # Union results
    return hot_result.unionByName(normal_result)

4.3 Join Column Optimization
# GOOD: Ensure join columns have same types
df1 = df1.withColumn("key", F.col("key").cast("string"))
df2 = df2.withColumn("key", F.col("key").cast("string"))
result = df1.join(df2, "key")

# GOOD: Create composite key for multi-column joins
df1 = df1.withColumn(
    "_join_key",
    F.concat_ws("||", F.col("col1"), F.col("col2"), F.col("col3"))
)
df2 = df2.withColumn(
    "_join_key",
    F.concat_ws("||", F.col("col1"), F.col("col2"), F.col("col3"))
)
result = df1.join(df2, "_join_key").drop("_join_key")

________________________________________________________________________________
5. Performance Optimization
5.1 Partition Management
# Check current partitions
print(f"Number of partitions: {df.rdd.getNumPartitions()}")

# GOOD: Repartition for parallelism (shuffle)
df = df.repartition(200)  # Increase partitions
df = df.repartition("customer_id")  # Partition by column

# GOOD: Coalesce to reduce partitions (no shuffle)
df = df.coalesce(10)  # Reduce partitions

# GOOD: Repartition before write for optimal file sizes
(df
    .repartition(100)  # Control output file count
    .write
    .format("delta")
    .mode("overwrite")
    .saveAsTable("output_table")
)

# GOOD: Use spark.sql.shuffle.partitions
spark.conf.set("spark.sql.shuffle.partitions", "auto")  # AQE auto-tune
# Or set explicitly based on data size
spark.conf.set("spark.sql.shuffle.partitions", "200")

5.2 Caching and Persistence
# GOOD: Cache DataFrames used multiple times
df = spark.table("large_table").filter(F.col("date") >= "2025-01-01")

# Cache with default storage level
df.cache()

# Or with specific storage level
from pyspark.storagelevel import StorageLevel
df.persist(StorageLevel.MEMORY_AND_DISK)

# Force caching with action
df.count()

# Use the cached DataFrame
result1 = df.groupBy("col1").count()
result2 = df.groupBy("col2").sum("amount")

# IMPORTANT: Unpersist when done
df.unpersist()

# GOOD: Use caching in a context manager pattern
class CachedDataFrame:
    def __init__(self, df):
        self.df = df

    def __enter__(self):
        self.df.cache()
        self.df.count()  # Materialize cache
        return self.df

    def __exit__(self, *args):
        self.df.unpersist()

# Usage
with CachedDataFrame(large_df) as df:
    result1 = df.groupBy("col1").count()
    result2 = df.groupBy("col2").sum("amount")

5.3 Avoiding Common Anti-Patterns
# AVOID: Collecting large DataFrames to driver
# bad_pattern = df.collect()  # Can cause OOM

# GOOD: Use limit or take
sample_rows = df.take(100)
sample_rows = df.limit(100).collect()

# AVOID: Using Python UDFs for simple operations
# @F.udf(StringType())
# def concat_names(first, last):
#     return f"{first} {last}"

# GOOD: Use built-in functions
df = df.withColumn("full_name", F.concat_ws(" ", "first_name", "last_name"))

# AVOID: Iterating over rows
# for row in df.collect():  # Never do this for large data
#     process(row)

# GOOD: Use DataFrame transformations
df = df.withColumn("processed", F.some_function(F.col("column")))

# AVOID: Using count() in conditions repeatedly
# if df.count() > 0:  # Triggers full computation
#     if df.count() > 100:  # Triggers again!

# GOOD: Cache and reuse count
count = df.cache().count()
if count > 0:
    if count > 100:
        pass

# AVOID: Creating DataFrames in loops
# for item in items:
#     df = spark.createDataFrame([item])  # Creates many small DFs

# GOOD: Create single DataFrame
df = spark.createDataFrame(items)

5.4 Catalyst Optimizer Tips
# GOOD: Let Catalyst optimize - don't over-specify
# The optimizer will reorder operations for efficiency

# GOOD: Use explain() to understand execution plan
df.explain()           # Simple plan
df.explain(True)       # Extended plan
df.explain("formatted") # Formatted plan
df.explain("cost")     # Cost-based plan

# GOOD: Check for partition pruning
spark.sql("""
    SELECT * FROM partitioned_table
    WHERE date_partition = '2025-01-24'
""").explain()
# Look for: "PartitionFilters: [isnotnull(date_partition), (date_partition = 2025-01-24)]"

# GOOD: Enable AQE for runtime optimization
spark.conf.set("spark.sql.adaptive.enabled", "true")
spark.conf.set("spark.sql.adaptive.coalescePartitions.enabled", "true")
spark.conf.set("spark.sql.adaptive.skewJoin.enabled", "true")

________________________________________________________________________________
6. Error Handling
6.1 Robust Pipeline Pattern
from typing import Tuple, Optional
import logging

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class PipelineResult:
    def __init__(self, success: bool, df: Optional[DataFrame] = None,
                 error: Optional[str] = None, metrics: Optional[Dict] = None):
        self.success = success
        self.df = df
        self.error = error
        self.metrics = metrics or {}

def safe_transform(
    df: DataFrame,
    transform_func,
    step_name: str
) -> Tuple[DataFrame, bool, Optional[str]]:
    """
    Safely apply a transformation with error handling.
    """
    try:
        logger.info(f"Starting step: {step_name}")
        result_df = transform_func(df)

        # Validate output
        if result_df is None:
            raise ValueError(f"Transform returned None")

        # Force evaluation to catch errors
        count = result_df.count()
        logger.info(f"Step {step_name} completed. Rows: {count}")

        return result_df, True, None

    except Exception as e:
        error_msg = f"Error in {step_name}: {str(e)}"
        logger.error(error_msg)
        return df, False, error_msg

def run_pipeline(source_table: str, target_table: str) -> PipelineResult:
    """
    Run complete ETL pipeline with error handling.
    """
    metrics = {"start_time": datetime.now().isoformat()}

    try:
        # Read source
        df = spark.table(source_table)
        metrics["input_count"] = df.count()

        # Apply transformations
        transformations = [
            (clean_data, "clean_data"),
            (apply_business_rules, "apply_business_rules"),
            (calculate_aggregates, "calculate_aggregates"),
        ]

        for transform_func, step_name in transformations:
            df, success, error = safe_transform(df, transform_func, step_name)
            if not success:
                return PipelineResult(False, error=error, metrics=metrics)

        # Write output
        (df.write
            .format("delta")
            .mode("overwrite")
            .saveAsTable(target_table))

        metrics["output_count"] = df.count()
        metrics["end_time"] = datetime.now().isoformat()

        return PipelineResult(True, df=df, metrics=metrics)

    except Exception as e:
        logger.error(f"Pipeline failed: {str(e)}")
        return PipelineResult(False, error=str(e), metrics=metrics)

6.2 Data Quality Checks
class DataQualityChecker:
    def __init__(self, df: DataFrame):
        self.df = df
        self.checks = []
        self.results = []

    def check_not_null(self, columns: List[str]) -> 'DataQualityChecker':
        """Check that columns have no null values."""
        for col in columns:
            null_count = self.df.filter(F.col(col).isNull()).count()
            self.results.append({
                "check": f"not_null({col})",
                "passed": null_count == 0,
                "details": f"Found {null_count} nulls"
            })
        return self

    def check_unique(self, columns: List[str]) -> 'DataQualityChecker':
        """Check that column combination is unique."""
        total = self.df.count()
        distinct = self.df.select(columns).distinct().count()
        self.results.append({
            "check": f"unique({', '.join(columns)})",
            "passed": total == distinct,
            "details": f"Total: {total}, Distinct: {distinct}"
        })
        return self

    def check_range(self, column: str, min_val, max_val) -> 'DataQualityChecker':
        """Check that values are within range."""
        out_of_range = self.df.filter(
            (F.col(column) < min_val) | (F.col(column) > max_val)
        ).count()
        self.results.append({
            "check": f"range({column}, {min_val}, {max_val})",
            "passed": out_of_range == 0,
            "details": f"Found {out_of_range} out of range"
        })
        return self

    def check_referential_integrity(
        self, column: str, ref_df: DataFrame, ref_column: str
    ) -> 'DataQualityChecker':
        """Check foreign key relationship."""
        orphans = self.df.join(
            ref_df.select(F.col(ref_column).alias("_ref")),
            self.df[column] == F.col("_ref"),
            "left_anti"
        ).count()
        self.results.append({
            "check": f"fk({column} -> {ref_column})",
            "passed": orphans == 0,
            "details": f"Found {orphans} orphan records"
        })
        return self

    def validate(self, fail_on_error: bool = True) -> List[Dict]:
        """Run all checks and optionally fail on errors."""
        failures = [r for r in self.results if not r["passed"]]
        if failures and fail_on_error:
            raise ValueError(f"Data quality checks failed: {failures}")
        return self.results

# Usage
checker = (DataQualityChecker(df)
    .check_not_null(["customer_id", "order_date"])
    .check_unique(["order_id"])
    .check_range("amount", 0, 1000000)
    .check_referential_integrity("customer_id", customers_df, "customer_id")
)
results = checker.validate()

________________________________________________________________________________
7. Production Patterns
7.1 Incremental Processing
def incremental_load(
    source_table: str,
    target_table: str,
    watermark_column: str,
    checkpoint_table: str
) -> int:
    """
    Perform incremental load based on watermark.
    """
    # Get last watermark
    try:
        last_watermark = spark.sql(f"""
            SELECT MAX(watermark_value) as wm
            FROM {checkpoint_table}
            WHERE table_name = '{target_table}'
        """).collect()[0]["wm"]
    except:
        last_watermark = "1900-01-01 00:00:00"

    # Read incremental data
    new_data = spark.sql(f"""
        SELECT *
        FROM {source_table}
        WHERE {watermark_column} > '{last_watermark}'
    """)

    row_count = new_data.count()

    if row_count > 0:
        # Apply transformations
        transformed = transform_data(new_data)

        # Merge into target
        target = DeltaTable.forName(spark, target_table)
        (target.alias("target")
            .merge(transformed.alias("source"), "target.id = source.id")
            .whenMatchedUpdateAll()
            .whenNotMatchedInsertAll()
            .execute())

        # Update watermark
        new_watermark = new_data.agg(F.max(watermark_column)).collect()[0][0]
        spark.sql(f"""
            INSERT INTO {checkpoint_table}
            VALUES ('{target_table}', '{new_watermark}', current_timestamp())
        """)

    return row_count

7.2 Idempotent Operations
def idempotent_write(
    df: DataFrame,
    target_table: str,
    key_columns: List[str],
    partition_column: Optional[str] = None
) -> None:
    """
    Write data idempotently using MERGE.
    """
    # Check if target exists
    if spark.catalog.tableExists(target_table):
        target = DeltaTable.forName(spark, target_table)

        # Build merge condition
        merge_condition = " AND ".join([
            f"target.{col} = source.{col}" for col in key_columns
        ])

        # Merge
        (target.alias("target")
            .merge(df.alias("source"), merge_condition)
            .whenMatchedUpdateAll()
            .whenNotMatchedInsertAll()
            .execute())
    else:
        # Create table on first run
        writer = df.write.format("delta")
        if partition_column:
            writer = writer.partitionBy(partition_column)
        writer.saveAsTable(target_table)

7.3 Parallel Processing
from concurrent.futures import ThreadPoolExecutor, as_completed

def process_partitions_parallel(
    table_name: str,
    partitions: List[str],
    process_func,
    max_workers: int = 4
) -> List[Dict]:
    """
    Process table partitions in parallel.
    """
    results = []

    with ThreadPoolExecutor(max_workers=max_workers) as executor:
        futures = {
            executor.submit(process_func, table_name, partition): partition
            for partition in partitions
        }

        for future in as_completed(futures):
            partition = futures[future]
            try:
                result = future.result()
                results.append({
                    "partition": partition,
                    "status": "success",
                    "result": result
                })
            except Exception as e:
                results.append({
                    "partition": partition,
                    "status": "error",
                    "error": str(e)
                })

    return results

________________________________________________________________________________
8. Testing Best Practices
8.1 Unit Testing with pytest
# test_transformations.py
import pytest
from pyspark.sql import SparkSession
from pyspark.sql import functions as F
from my_module import clean_customer_data, calculate_metrics

@pytest.fixture(scope="session")
def spark():
    """Create SparkSession for testing."""
    return (SparkSession.builder
        .master("local[2]")
        .appName("unit-tests")
        .config("spark.sql.shuffle.partitions", "2")
        .getOrCreate())

@pytest.fixture
def sample_customers(spark):
    """Create sample customer DataFrame."""
    data = [
        ("C001", "John Doe", "john@email.com", 100.0),
        ("C002", "Jane Smith", "jane@email.com", 200.0),
        ("C003", None, "test@email.com", 50.0),  # Null name
    ]
    return spark.createDataFrame(data, ["id", "name", "email", "amount"])

class TestCleanCustomerData:
    def test_removes_null_names(self, spark, sample_customers):
        result = clean_customer_data(sample_customers)
        assert result.filter(F.col("name").isNull()).count() == 0

    def test_preserves_valid_records(self, spark, sample_customers):
        result = clean_customer_data(sample_customers)
        assert result.count() == 2

    def test_output_schema(self, spark, sample_customers):
        result = clean_customer_data(sample_customers)
        expected_columns = {"id", "name", "email", "amount", "cleaned_at"}
        assert set(result.columns) == expected_columns

class TestCalculateMetrics:
    def test_sum_calculation(self, spark, sample_customers):
        result = calculate_metrics(sample_customers)
        total = result.collect()[0]["total_amount"]
        assert total == 350.0  # 100 + 200 + 50

    def test_count_calculation(self, spark, sample_customers):
        result = calculate_metrics(sample_customers)
        count = result.collect()[0]["customer_count"]
        assert count == 3

8.2 Integration Testing
# test_pipeline_integration.py
import pytest
from delta.tables import DeltaTable

class TestEndToEndPipeline:
    @pytest.fixture(autouse=True)
    def setup_teardown(self, spark):
        """Setup test tables before each test, cleanup after."""
        # Setup
        self.test_db = "test_db"
        spark.sql(f"CREATE DATABASE IF NOT EXISTS {self.test_db}")

        yield

        # Teardown
        spark.sql(f"DROP DATABASE IF EXISTS {self.test_db} CASCADE")

    def test_full_pipeline(self, spark):
        # Arrange
        source_data = [
            ("O001", "C001", "2025-01-24", 100.0),
            ("O002", "C001", "2025-01-24", 200.0),
        ]
        source_df = spark.createDataFrame(
            source_data, ["order_id", "customer_id", "order_date", "amount"]
        )
        source_df.write.saveAsTable(f"{self.test_db}.source_orders")

        # Act
        from my_pipeline import run_pipeline
        result = run_pipeline(
            source_table=f"{self.test_db}.source_orders",
            target_table=f"{self.test_db}.target_orders"
        )

        # Assert
        assert result.success
        target_df = spark.table(f"{self.test_db}.target_orders")
        assert target_df.count() == 2

________________________________________________________________________________
9. Configuration Management
9.1 Configuration Class
from dataclasses import dataclass
from typing import Optional
import json

@dataclass
class PipelineConfig:
    """Configuration for data pipeline."""

    # Source configuration
    source_table: str
    source_filter: Optional[str] = None

    # Target configuration
    target_table: str
    write_mode: str = "merge"
    partition_columns: Optional[list] = None

    # Processing configuration
    batch_size: int = 100000
    parallelism: int = 200
    enable_caching: bool = True

    # Quality thresholds
    min_row_count: int = 0
    max_null_percentage: float = 0.05

    @classmethod
    def from_json(cls, json_path: str) -> 'PipelineConfig':
        """Load configuration from JSON file."""
        with open(json_path) as f:
            config_dict = json.load(f)
        return cls(**config_dict)

    @classmethod
    def from_widget(cls, dbutils) -> 'PipelineConfig':
        """Load configuration from Databricks widgets."""
        return cls(
            source_table=dbutils.widgets.get("source_table"),
            target_table=dbutils.widgets.get("target_table"),
            write_mode=dbutils.widgets.get("write_mode"),
            batch_size=int(dbutils.widgets.get("batch_size")),
        )

# Usage
config = PipelineConfig(
    source_table="bronze.raw_orders",
    target_table="silver.clean_orders",
    partition_columns=["order_date"],
    batch_size=50000
)

________________________________________________________________________________
10. Logging and Monitoring
10.1 Structured Logging
import logging
import json
from datetime import datetime

class StructuredLogger:
    def __init__(self, name: str, job_id: str = None):
        self.logger = logging.getLogger(name)
        self.logger.setLevel(logging.INFO)
        self.job_id = job_id or datetime.now().strftime("%Y%m%d_%H%M%S")
        self.metrics = {}

    def log_event(self, event_type: str, message: str, **kwargs):
        """Log structured event."""
        log_record = {
            "timestamp": datetime.now().isoformat(),
            "job_id": self.job_id,
            "event_type": event_type,
            "message": message,
            **kwargs
        }
        self.logger.info(json.dumps(log_record))

    def log_metric(self, metric_name: str, value: float, **tags):
        """Log a metric value."""
        self.metrics[metric_name] = value
        self.log_event("metric", f"{metric_name}={value}", metric_name=metric_name, value=value, **tags)

    def log_stage_start(self, stage_name: str):
        """Log start of a pipeline stage."""
        self.log_event("stage_start", f"Starting {stage_name}", stage=stage_name)

    def log_stage_end(self, stage_name: str, row_count: int = None, duration_ms: int = None):
        """Log end of a pipeline stage."""
        self.log_event(
            "stage_end",
            f"Completed {stage_name}",
            stage=stage_name,
            row_count=row_count,
            duration_ms=duration_ms
        )

# Usage
logger = StructuredLogger("CustomerPipeline")
logger.log_stage_start("data_ingestion")
# ... process data ...
logger.log_stage_end("data_ingestion", row_count=10000, duration_ms=5000)
logger.log_metric("records_processed", 10000, table="customers")
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