[image: ]



Technical Guide

PySpark DAG Optimization Patterns




Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice


Table of Contents
[Executive Summary](#1-executive-summary)
[Understanding the DAG](#2-understanding-the-dag)
2.1 [DAG Fundamentals](#21-dag-fundamentals)
2.2 [Stage Boundaries](#22-stage-boundaries)
2.3 [Reading the Spark UI DAG](#23-reading-the-spark-ui-dag)
[Common Anti-Patterns](#3-common-anti-patterns)
3.1 [Unnecessary Shuffles](#31-unnecessary-shuffles)
3.2 [Repeated Computations](#32-repeated-computations)
3.3 [Cartesian Products](#33-cartesian-products)
3.4 [Collect on Large Data](#34-collect-on-large-data)
3.5 [UDF Overhead](#35-udf-overhead)
[Join Optimization Patterns](#4-join-optimization-patterns)
4.1 [Broadcast Joins](#41-broadcast-joins)
4.2 [Sort-Merge Join Optimization](#42-sort-merge-join-optimization)
4.3 [Bucket Joins](#43-bucket-joins)
4.4 [Skew Join Handling](#44-skew-join-handling)
4.5 [Multi-Table Join Ordering](#45-multi-table-join-ordering)
[Aggregation Optimization](#5-aggregation-optimization)
5.1 [Two-Phase Aggregation](#51-two-phase-aggregation)
5.2 [Approximate Aggregations](#52-approximate-aggregations)
5.3 [Window Function Optimization](#53-window-function-optimization)
[Filter and Projection Patterns](#6-filter-and-projection-patterns)
6.1 [Predicate Pushdown](#61-predicate-pushdown)
6.2 [Column Pruning](#62-column-pruning)
6.3 [Partition Pruning](#63-partition-pruning)
6.4 [Filter Ordering](#64-filter-ordering)
[Caching Strategies](#7-caching-strategies)
7.1 [When to Cache](#71-when-to-cache)
7.2 [Cache vs Persist](#72-cache-vs-persist)
7.3 [Checkpoint Patterns](#73-checkpoint-patterns)
7.4 [Cache Invalidation](#74-cache-invalidation)
[Partitioning Optimization](#8-partitioning-optimization)
8.1 [Optimal Partition Count](#81-optimal-partition-count)
8.2 [Repartition vs Coalesce](#82-repartition-vs-coalesce)
8.3 [Pre-Partitioning for Joins](#83-pre-partitioning-for-joins)
8.4 [Custom Partitioners](#84-custom-partitioners)
[Shuffle Reduction Techniques](#9-shuffle-reduction-techniques)
9.1 [Map-Side Aggregation](#91-map-side-aggregation)
9.2 [Broadcast Variables](#92-broadcast-variables)
9.3 [Co-located Joins](#93-co-located-joins)
9.4 [Shuffle Hash vs Sort-Merge](#94-shuffle-hash-vs-sort-merge)
[Catalyst Optimizer Hints](#10-catalyst-optimizer-hints)
10.1 [Join Hints](#101-join-hints)
10.2 [Coalesce Hints](#102-coalesce-hints)
10.3 [Repartition Hints](#103-repartition-hints)
[Data Skew Patterns](#11-data-skew-patterns)
11.1 [Detecting Skew](#111-detecting-skew)
11.2 [Salting Technique](#112-salting-technique)
11.3 [Isolation Approach](#113-isolation-approach)
11.4 [AQE Skew Handling](#114-aqe-skew-handling)
[Pipeline Optimization](#12-pipeline-optimization)
12.1 [Stage Consolidation](#121-stage-consolidation)
12.2 [Lazy Evaluation Benefits](#122-lazy-evaluation-benefits)
12.3 [Action Minimization](#123-action-minimization)
[Real-World Optimization Examples](#13-real-world-optimization-examples)
13.1 [ETL Pipeline Optimization](#131-etl-pipeline-optimization)
13.2 [Aggregation Query Optimization](#132-aggregation-query-optimization)
13.3 [Multi-Join Query Optimization](#133-multi-join-query-optimization)
[Optimization Checklist](#14-optimization-checklist)
[Troubleshooting Slow DAGs](#15-troubleshooting-slow-dags)
[Glossary](#16-glossary)
1. Executive Summary
The Directed Acyclic Graph (DAG) is the backbone of Spark's execution model, representing the logical plan of data transformations. Understanding and optimizing the DAG is essential for achieving high-performance Spark applications.
Key Optimization Principles:
Minimize shuffles: Each shuffle creates a stage boundary and network I/O
Push filters early: Filter data as close to the source as possible
Cache strategically: Cache only when recomputation cost exceeds storage cost
Handle skew proactively: Detect and address data skew before it causes bottlenecks
Use appropriate joins: Choose join strategies based on data characteristics
This document provides comprehensive patterns and anti-patterns for DAG optimization, with practical code examples and real-world scenarios.
2. Understanding the DAG
2.1 DAG Fundamentals
The DAG represents the logical execution plan as a graph of RDD transformations:
┌─────────────────────────────────────────────────────────────────┐
│                        DAG Structure                             │
└─────────────────────────────────────────────────────────────────┘

                    User Code
                        │
                        ▼
    ┌─────────────────────────────────────────┐
    │            Logical Plan (DAG)           │
    │                                          │
    │    ┌───────┐                            │
    │    │ Read  │                            │
    │    │ Data  │                            │
    │    └───┬───┘                            │
    │        │                                 │
    │        ▼                                 │
    │    ┌───────┐     Narrow                 │
    │    │Filter │     Transformation         │
    │    └───┬───┘                            │
    │        │                                 │
    │        ▼                                 │
    │    ┌───────┐     Narrow                 │
    │    │ Map   │     Transformation         │
    │    └───┬───┘                            │
    │        │                                 │
    │   ═════╧═════    Stage Boundary         │
    │        │         (Shuffle)              │
    │        ▼                                 │
    │    ┌───────┐     Wide                   │
    │    │GroupBy│     Transformation         │
    │    └───┬───┘                            │
    │        │                                 │
    │        ▼                                 │
    │    ┌───────┐                            │
    │    │ Write │                            │
    │    └───────┘                            │
    │                                          │
    └─────────────────────────────────────────┘
2.2 Stage Boundaries
Stages are created at shuffle boundaries. Understanding what triggers a new stage is critical:
Narrow Transformations (Same Stage):
	Transformation
	Description
	Stage Impact

	`map()`
	Transform each element
	No new stage

	`filter()`
	Select elements
	No new stage

	`flatMap()`
	Map and flatten
	No new stage

	`mapPartitions()`
	Transform partitions
	No new stage

	`union()`
	Combine datasets
	No new stage

	`coalesce()`
	Reduce partitions
	No new stage



Wide Transformations (New Stage):
	Transformation
	Description
	Stage Impact

	`groupByKey()`
	Group by key
	New stage

	`reduceByKey()`
	Aggregate by key
	New stage

	`join()`
	Join datasets
	New stage

	`distinct()`
	Remove duplicates
	New stage

	`repartition()`
	Redistribute data
	New stage

	`sortBy()`
	Sort data
	New stage



2.3 Reading the Spark UI DAG
Key Elements to Analyze:
┌─────────────────────────────────────────────────────────────────┐
│                    Spark UI DAG Analysis                         │
└─────────────────────────────────────────────────────────────────┘

Elements to check:
├─ Stage count (fewer is better)
├─ Shuffle read/write sizes
├─ Task duration distribution
├─ Skipped stages (cached data)
└─ Exchange nodes (shuffles)

Example DAG interpretation:

    Stage 0                    Stage 1
    ┌─────────────────┐       ┌─────────────────┐
    │ Scan parquet    │       │ HashAggregate   │
    │ (50 tasks)      │       │ (final)         │
    │                 │       │ (200 tasks)     │
    │ Filter          │       │                 │
    │                 │       │ Sort            │
    │ Project         │       │                 │
    │                 │       │                 │
    │ HashAggregate   │       │                 │
    │ (partial)       │       │                 │
    └────────┬────────┘       └────────┬────────┘
             │                         │
             │    ┌────────────┐       │
             └───►│  Exchange  │───────┘
                  │ (Shuffle)  │
                  │ 2.5 GB     │
                  └────────────┘

Analysis:
• 2 stages (good for groupBy)
• 2.5 GB shuffle (monitor this)
• Partial aggregation in Stage 0 (good - map-side combine)
3. Common Anti-Patterns
3.1 Unnecessary Shuffles
Anti-Pattern: Multiple GroupBys
# BAD: Two separate shuffles
df.groupBy("category").agg(sum("sales")) \
  .groupBy("category").agg(count("*"))  # Unnecessary second shuffle!

# GOOD: Single shuffle with multiple aggregations
df.groupBy("category").agg(
    sum("sales").alias("total_sales"),
    count("*").alias("count")
)
Anti-Pattern: Distinct Before GroupBy
# BAD: Shuffle for distinct + shuffle for groupBy
df.select("category", "product").distinct() \
  .groupBy("category").count()

# GOOD: Direct aggregation
df.groupBy("category").agg(
    countDistinct("product").alias("unique_products")
)
3.2 Repeated Computations
Anti-Pattern: Recomputing DataFrames
# BAD: expensive_df computed 3 times!
expensive_df = df.join(lookup, "key").filter(condition).groupBy("cat").agg(...)

count = expensive_df.count()           # Computation 1
summary = expensive_df.describe()      # Computation 2
expensive_df.write.parquet("output")   # Computation 3

# GOOD: Cache and reuse
expensive_df = df.join(lookup, "key").filter(condition).groupBy("cat").agg(...)
expensive_df.cache()

count = expensive_df.count()           # Computation 1 (cached after)
summary = expensive_df.describe()      # Uses cache
expensive_df.write.parquet("output")   # Uses cache

expensive_df.unpersist()               # Clean up
3.3 Cartesian Products
Anti-Pattern: Accidental Cross Joins
# BAD: Missing join condition creates cartesian product!
result = df1.join(df2)  # DANGER: This is a cross join

# GOOD: Always specify join condition
result = df1.join(df2, df1.key == df2.key)

# If cross join is intentional, be explicit
result = df1.crossJoin(df2)  # At least it's clear
Detecting Cartesian Products:
# Spark will warn but still execute
# Set this to fail fast instead:
spark.conf.set("spark.sql.crossJoin.enabled", "false")
3.4 Collect on Large Data
Anti-Pattern: Collecting Large Results
# BAD: Can cause driver OOM
all_data = df.collect()  # Brings all data to driver
for row in all_data:
    process(row)

# GOOD: Process on executors
df.foreach(lambda row: process(row))

# GOOD: Write to storage for large results
df.write.parquet("output/")

# GOOD: Collect only what you need
summary = df.limit(100).collect()
3.5 UDF Overhead
Anti-Pattern: Python UDFs for Simple Operations
from pyspark.sql.functions import udf
from pyspark.sql.types import StringType

# BAD: Python UDF for simple string operation
@udf(StringType())
def upper_case(s):
    return s.upper() if s else None

df.withColumn("upper_name", upper_case(col("name")))

# GOOD: Use built-in function (vectorized, JVM-native)
from pyspark.sql.functions import upper
df.withColumn("upper_name", upper(col("name")))
UDF Performance Impact:
┌─────────────────────────────────────────────────────────────────┐
│                    UDF Performance Comparison                    │
└─────────────────────────────────────────────────────────────────┘

Operation: String uppercase on 100M rows

┌─────────────────────┬───────────────┬─────────────────┐
│ Method              │ Time          │ Relative Speed  │
├─────────────────────┼───────────────┼─────────────────┤
│ Built-in upper()    │ 15 seconds    │ 1x (baseline)   │
│ Pandas UDF          │ 45 seconds    │ 3x slower       │
│ Python UDF          │ 180 seconds   │ 12x slower      │
└─────────────────────┴───────────────┴─────────────────┘

Reason: Python UDFs require serialization between JVM and Python
4. Join Optimization Patterns
4.1 Broadcast Joins
When to Use Broadcast:
One table is small (< 10MB default, configurable)
Broadcast table fits in executor memory
Avoid shuffle entirely
from pyspark.sql.functions import broadcast

# Automatic broadcast (if under threshold)
spark.conf.set("spark.sql.autoBroadcastJoinThreshold", "10485760")  # 10MB

# Explicit broadcast hint
result = large_df.join(
    broadcast(small_lookup_df),
    "join_key"
)
Broadcast Join Visualization:
┌─────────────────────────────────────────────────────────────────┐
│                    Broadcast Join Pattern                        │
└─────────────────────────────────────────────────────────────────┘

Without Broadcast:                    With Broadcast:

Large Table    Small Table           Large Table    Small Table
    │              │                     │              │
    ▼              ▼                     │              │
┌───────┐      ┌───────┐                │         ┌────▼────┐
│Shuffle│      │Shuffle│                │         │Broadcast│
│ Write │      │ Write │                │         │to all   │
└───┬───┘      └───┬───┘                │         │executors│
    │              │                     │         └────┬────┘
    ▼              ▼                     ▼              │
┌───────────────────────┐           ┌───────────────────────┐
│   Shuffle Read        │           │   Local Join          │
│   + Join              │           │   (no shuffle!)       │
└───────────────────────┘           └───────────────────────┘

Network: 2x data transfer            Network: Small table only
Stages: 3                            Stages: 1
4.2 Sort-Merge Join Optimization
Optimizing Sort-Merge Joins:
# Pre-sort data if joining multiple times on same key
df_sorted = df.sortWithinPartitions("join_key")

# Ensure consistent partitioning for repeated joins
df1_prepared = df1.repartition(200, "key")
df2_prepared = df2.repartition(200, "key")

# Join (will use sort-merge with same partitioning)
result = df1_prepared.join(df2_prepared, "key")
4.3 Bucket Joins
Bucketing for Repeated Joins:
# Write bucketed table
df.write \
  .bucketBy(200, "join_key") \
  .sortBy("join_key") \
  .saveAsTable("bucketed_table")

# Read bucketed tables
df1 = spark.table("bucketed_table1")
df2 = spark.table("bucketed_table2")

# Join without shuffle (if same bucket count and key)
result = df1.join(df2, "join_key")
Bucket Join Requirements:
	Requirement
	Condition

	Same bucket count
	Both tables bucketed by same number

	Same bucket columns
	Join columns match bucket columns

	Same sort order
	Optional but improves performance

	Tables registered
	Must be read as tables, not files



4.4 Skew Join Handling
Salting Pattern for Skewed Keys:
import pyspark.sql.functions as F

# Identify skewed keys (e.g., key "popular" has 90% of data)
skewed_keys = ["popular", "common"]

# Salt the skewed keys in the large table
num_salts = 10

large_df_salted = large_df.withColumn(
    "salted_key",
    F.when(
        F.col("key").isin(skewed_keys),
        F.concat(F.col("key"), F.lit("_"), (F.rand() * num_salts).cast("int"))
    ).otherwise(F.col("key"))
)

# Explode the small table for skewed keys
from pyspark.sql.types import ArrayType, IntegerType

small_df_exploded = small_df.withColumn(
    "salt",
    F.when(
        F.col("key").isin(skewed_keys),
        F.array([F.lit(i) for i in range(num_salts)])
    ).otherwise(F.array(F.lit(0)))
).select("*", F.explode("salt").alias("salt_value")) \
 .withColumn(
    "salted_key",
    F.when(
        F.col("key").isin(skewed_keys),
        F.concat(F.col("key"), F.lit("_"), F.col("salt_value"))
    ).otherwise(F.col("key"))
).drop("salt", "salt_value")

# Join on salted key
result = large_df_salted.join(small_df_exploded, "salted_key")
4.5 Multi-Table Join Ordering
Join Order Optimization:
# BAD: Large × Large × Small (two large shuffles first)
result = large1.join(large2, "key1").join(small, "key2")

# GOOD: Small × Large × Large (broadcast first, then one shuffle)
result = large1.join(broadcast(small), "key2").join(large2, "key1")

# BEST: Let Catalyst optimize with statistics
# Ensure tables have statistics computed
spark.sql("ANALYZE TABLE large1 COMPUTE STATISTICS")
spark.sql("ANALYZE TABLE large2 COMPUTE STATISTICS")
Join Order Decision Tree:
┌─────────────────────────────────────────────────────────────────┐
│                    Join Order Strategy                           │
└─────────────────────────────────────────────────────────────────┘

Start: Multiple tables to join
           │
           ▼
    ┌──────────────────┐
    │ Any broadcastable│──── Yes ──► Join with broadcast first
    │ tables?          │              (reduces subsequent data)
    └────────┬─────────┘
             │ No
             ▼
    ┌──────────────────┐
    │ Any filtering    │──── Yes ──► Apply filter first
    │ joins?           │              (inner join reduces rows)
    └────────┬─────────┘
             │ No
             ▼
    ┌──────────────────┐
    │ Largest reduction│──── Join pair with most selective
    │ first            │     join condition first
    └──────────────────┘
5. Aggregation Optimization
5.1 Two-Phase Aggregation
Understanding Two-Phase Aggregation:
┌─────────────────────────────────────────────────────────────────┐
│                Two-Phase Aggregation Pattern                     │
└─────────────────────────────────────────────────────────────────┘

Phase 1: Partial Aggregation (Map-Side)
┌──────────────────────────────────────────────────────────────────┐
│ Partition 1        Partition 2        Partition 3               │
│ ┌────────────┐     ┌────────────┐     ┌────────────┐           │
│ │(A,1)(A,2)  │     │(A,3)(B,1)  │     │(B,2)(B,3)  │           │
│ │(B,1)(A,3)  │     │(A,1)(B,2)  │     │(A,1)(A,2)  │           │
│ └─────┬──────┘     └─────┬──────┘     └─────┬──────┘           │
│       │                  │                  │                   │
│       ▼                  ▼                  ▼                   │
│ ┌────────────┐     ┌────────────┐     ┌────────────┐           │
│ │(A,6)(B,1)  │     │(A,4)(B,3)  │     │(A,3)(B,5)  │ Partial   │
│ └────────────┘     └────────────┘     └────────────┘ sums      │
└──────────────────────────────────────────────────────────────────┘
                              │
                              │ Shuffle only partial results!
                              ▼
Phase 2: Final Aggregation (Reduce-Side)
┌──────────────────────────────────────────────────────────────────┐
│ ┌────────────────────────────────────────────────────────────┐  │
│ │ (A,6) + (A,4) + (A,3) = (A,13)                              │  │
│ │ (B,1) + (B,3) + (B,5) = (B,9)                               │  │
│ └────────────────────────────────────────────────────────────┘  │
└──────────────────────────────────────────────────────────────────┘
Enabling Efficient Aggregation:
# Good: reduceByKey uses two-phase aggregation
rdd.reduceByKey(lambda a, b: a + b)

# Good: DataFrame agg with combinable functions
df.groupBy("key").agg(
    sum("value"),       # Combinable
    count("*"),         # Combinable
    avg("value"),       # Combinable (sum/count)
    max("value")        # Combinable
)

# Bad: groupByKey followed by reduce (no map-side combine)
rdd.groupByKey().mapValues(sum)
5.2 Approximate Aggregations
When Exact Counts Aren't Necessary:
# Exact count distinct - requires full shuffle
exact_count = df.select(countDistinct("user_id")).collect()[0][0]

# Approximate count - much faster with HyperLogLog
approx_count = df.select(approx_count_distinct("user_id", 0.05)).collect()[0][0]
# 0.05 = 5% relative standard deviation

# Comparison
# Dataset: 1 billion rows, 100 million distinct users
# Exact: 45 seconds
# Approximate: 8 seconds (within 5% accuracy)
5.3 Window Function Optimization
Window Function Best Practices:
from pyspark.sql.window import Window
from pyspark.sql.functions import row_number, rank, lag

# Define window with partition and order
window_spec = Window.partitionBy("category").orderBy("date")

# Efficient: Single window definition reused
df = df.withColumn("rank", rank().over(window_spec)) \
       .withColumn("row_num", row_number().over(window_spec)) \
       .withColumn("prev_value", lag("value", 1).over(window_spec))

# Inefficient: Multiple different orderings cause multiple sorts
window1 = Window.partitionBy("cat").orderBy("date")
window2 = Window.partitionBy("cat").orderBy("value")  # Different order!

df = df.withColumn("rank_by_date", rank().over(window1)) \
       .withColumn("rank_by_value", rank().over(window2))  # Extra sort!
6. Filter and Projection Patterns
6.1 Predicate Pushdown
Enabling Maximum Pushdown:
# Predicate pushdown to data source
df = spark.read.parquet("data/") \
    .filter(col("year") == 2024) \
    .filter(col("status") == "active")

# Verify pushdown in physical plan
df.explain()
# Look for: PushedFilters: [IsNotNull(year), EqualTo(year,2024), ...]
Conditions That Prevent Pushdown:
	Pattern
	Pushdown
	Reason

	`col("year") == 2024`
	Yes
	Simple equality

	`col("year") > 2020`
	Yes
	Range comparison

	`col("year").isNotNull()`
	Yes
	Null check

	`col("year").isin([2023, 2024])`
	Yes
	IN clause

	`upper(col("name")) == "JOHN"`
	No
	Function on column

	`col("a") + col("b") > 100`
	No
	Expression

	`udf_func(col("x"))`
	No
	UDF



6.2 Column Pruning
Select Only Needed Columns:
# BAD: Reads all columns then selects
df = spark.read.parquet("data/")  # Reads 100 columns
result = df.filter(...).select("id", "name", "value")

# GOOD: Select early (Catalyst will optimize, but be explicit)
df = spark.read.parquet("data/").select("id", "name", "value", "filter_col") \
    .filter(...)

# BEST: Use schema to read only needed columns
schema = StructType([
    StructField("id", LongType()),
    StructField("name", StringType()),
    StructField("value", DoubleType())
])
df = spark.read.schema(schema).parquet("data/")
6.3 Partition Pruning
Leveraging Partitioned Data:
# Data is partitioned by year and month
# /data/year=2024/month=01/...
# /data/year=2024/month=02/...

# GOOD: Filter on partition columns - only reads relevant partitions
df = spark.read.parquet("data/") \
    .filter(col("year") == 2024) \
    .filter(col("month").isin([1, 2, 3]))
# Reads only 3 partitions!

# BAD: Filter after read - reads all partitions
df = spark.read.parquet("data/")
df_filtered = df.filter(col("year") == 2024)
# Partition pruning may not work as efficiently
6.4 Filter Ordering
Optimal Filter Placement:
# Filter selectivity matters for ordering

# BAD: Low selectivity filter first
df.filter(col("status").isNotNull())     # 99% pass
  .filter(col("category") == "electronics")  # 5% pass
  .filter(col("year") == 2024)           # 20% pass

# GOOD: High selectivity filter first (Catalyst usually optimizes this)
df.filter(col("category") == "electronics")  # 5% pass
  .filter(col("year") == 2024)           # 1% of remaining
  .filter(col("status").isNotNull())     # 0.99% of remaining

# BEST: Combine filters for optimizer
df.filter(
    (col("category") == "electronics") &
    (col("year") == 2024) &
    col("status").isNotNull()
)
7. Caching Strategies
7.1 When to Cache
Caching Decision Matrix:
┌─────────────────────────────────────────────────────────────────┐
│                    Caching Decision Tree                         │
└─────────────────────────────────────────────────────────────────┘

                Is DataFrame used multiple times?
                            │
              ┌─────────────┴─────────────┐
              No                          Yes
              │                            │
              ▼                            ▼
        Don't cache              Is computation expensive?
                                           │
                               ┌───────────┴───────────┐
                               No                      Yes
                               │                        │
                               ▼                        ▼
                    Consider caching          Does it fit in memory?
                    if 3+ reuses                       │
                                           ┌───────────┴───────────┐
                                           No                      Yes
                                           │                        │
                                           ▼                        ▼
                                   Use MEMORY_AND_DISK      Use MEMORY_ONLY
                                   or checkpoint            or MEMORY_ONLY_SER
Good Caching Scenarios:
# Scenario 1: Multiple actions on same DataFrame
expensive_df = source.join(lookup).filter(...).groupBy(...).agg(...)
expensive_df.cache()

# Multiple uses
count = expensive_df.count()                    # Action 1
stats = expensive_df.describe().collect()       # Action 2
expensive_df.write.parquet("output/")           # Action 3

expensive_df.unpersist()

# Scenario 2: Iterative algorithms
for i in range(10):
    df = df.transform(...)
    if i % 3 == 0:  # Periodically cache to break lineage
        df.cache().count()  # Materialize cache
        df.unpersist()      # Clear previous cache
7.2 Cache vs Persist
Storage Level Selection:
	Storage Level
	Memory
	Disk
	Serialized
	Replicas
	Use Case

	MEMORY_ONLY
	Yes
	No
	No
	1
	Default, fits in memory

	MEMORY_ONLY_SER
	Yes
	No
	Yes
	1
	Memory pressure

	MEMORY_AND_DISK
	Yes
	Yes
	No
	1
	Large datasets

	MEMORY_AND_DISK_SER
	Yes
	Yes
	Yes
	1
	Very large datasets

	DISK_ONLY
	No
	Yes
	Yes
	1
	Don't need fast access



from pyspark import StorageLevel

# Default cache (MEMORY_AND_DISK for DataFrames)
df.cache()

# Explicit storage level
df.persist(StorageLevel.MEMORY_ONLY_SER)

# Serialized with replication
df.persist(StorageLevel.MEMORY_AND_DISK_SER_2)
7.3 Checkpoint Patterns
When to Use Checkpointing:
# Set checkpoint directory
spark.sparkContext.setCheckpointDir("hdfs:///checkpoints")

# Use checkpoint to truncate lineage
# Good for: iterative algorithms, very long lineage, recovery points

# After many transformations
df = initial_df
for i in range(100):
    df = df.transform(complex_transformation)
    if i % 10 == 0:
        df = df.checkpoint()  # Truncate lineage every 10 iterations
Checkpoint vs Cache:
	Aspect
	Cache
	Checkpoint

	Storage
	Memory/local disk
	Reliable storage (HDFS)

	Lineage
	Preserved
	Truncated

	Recovery
	Recompute from lineage
	Read from checkpoint

	Use case
	Repeated access
	Long lineage, fault tolerance



7.4 Cache Invalidation
Managing Cached Data:
# Check if cached
df.storageLevel  # Returns StorageLevel

# Unpersist when done
df.unpersist()

# Clear all cached data
spark.catalog.clearCache()

# Monitor cache in Spark UI
# Storage tab shows: RDD Name, Storage Level, Size in Memory, Size on Disk
8. Partitioning Optimization
8.1 Optimal Partition Count
Partition Sizing Guidelines:
Target partition size: 128MB - 256MB
Minimum partitions: 2x total cores
Maximum partitions: Avoid > 100,000 (scheduling overhead)

Formula:
  optimal_partitions = max(
      total_data_size_mb / 200,
      total_cores * 2
  )

Example:
  Data: 100GB, Cluster: 100 cores
  By size: 100,000 MB / 200 = 500 partitions
  By cores: 100 * 2 = 200 partitions
  Result: 500 partitions (size-based wins)
Checking Partition Sizes:
# Check number of partitions
print(f"Partitions: {df.rdd.getNumPartitions()}")

# Check partition size distribution
def partition_size(iterator):
    import sys
    count = 0
    size = 0
    for row in iterator:
        count += 1
        size += sys.getsizeof(row)
    yield (count, size)

sizes = df.rdd.mapPartitions(partition_size).collect()
for i, (count, size) in enumerate(sizes):
    print(f"Partition {i}: {count} rows, {size/1024/1024:.2f} MB")
8.2 Repartition vs Coalesce
Choosing the Right Operation:
┌─────────────────────────────────────────────────────────────────┐
│              Repartition vs Coalesce Decision                    │
└─────────────────────────────────────────────────────────────────┘

                    Change partition count?
                            │
              ┌─────────────┴─────────────┐
           Increase                    Decrease
              │                            │
              ▼                            ▼
        Use repartition()          Need even distribution?
        (requires shuffle)                 │
                               ┌───────────┴───────────┐
                               No                      Yes
                               │                        │
                               ▼                        ▼
                        Use coalesce()           Use repartition()
                        (no shuffle)             (shuffle for balance)
# Increase partitions - must use repartition
df = df.repartition(500)  # Shuffle required

# Decrease partitions - prefer coalesce
df = df.coalesce(50)  # No shuffle, combines partitions

# Decrease with rebalancing - use repartition
df = df.repartition(50)  # Shuffle for even distribution
8.3 Pre-Partitioning for Joins
Optimizing Repeated Joins:
# If joining multiple tables on same key, pre-partition them
num_partitions = 200

# Pre-partition all tables by join key
orders = orders.repartition(num_partitions, "customer_id")
customers = customers.repartition(num_partitions, "customer_id")
transactions = transactions.repartition(num_partitions, "customer_id")

# Joins will now be more efficient (co-partitioned)
result = orders.join(customers, "customer_id") \
               .join(transactions, "customer_id")
8.4 Custom Partitioners
RDD-Level Custom Partitioning:
# Custom partitioner for geographic data
def geo_partitioner(key):
    region_map = {
        'US': 0, 'CA': 0,           # North America -> partition 0
        'UK': 1, 'DE': 1, 'FR': 1,  # Europe -> partition 1
        'JP': 2, 'CN': 2, 'IN': 2,  # Asia -> partition 2
    }
    return region_map.get(key, 3)   # Others -> partition 3

# Apply custom partitioner
rdd_partitioned = rdd.partitionBy(4, geo_partitioner)
9. Shuffle Reduction Techniques
9.1 Map-Side Aggregation
Leveraging Combiners:
# RDD API - explicit combiner
rdd.combineByKey(
    createCombiner=lambda v: (v, 1),
    mergeValue=lambda c, v: (c[0] + v, c[1] + 1),
    mergeCombiners=lambda c1, c2: (c1[0] + c2[0], c1[1] + c2[1])
)

# DataFrame API - automatic for algebraic aggregations
df.groupBy("key").agg(
    sum("value"),   # Algebraic - has combiner
    avg("value"),   # Algebraic - has combiner
    count("*")      # Algebraic - has combiner
)

# collect_list has no combiner - full shuffle
df.groupBy("key").agg(collect_list("value"))  # No map-side reduction
9.2 Broadcast Variables
Efficient Data Distribution:
# Broadcast small lookup data
lookup_dict = {"A": 1, "B": 2, "C": 3}
broadcast_lookup = spark.sparkContext.broadcast(lookup_dict)

# Use in transformations
def enrich_row(row):
    lookup = broadcast_lookup.value
    return (*row, lookup.get(row.key, 0))

enriched_rdd = df.rdd.map(enrich_row)

# Clean up when done
broadcast_lookup.destroy()
Broadcast Join Pattern:
from pyspark.sql.functions import broadcast

# Small dimension table (< 10MB ideal, up to ~1GB possible)
dim_table = spark.table("small_dimension")

# Broadcast join - no shuffle on large table
result = large_fact_table.join(
    broadcast(dim_table),
    "dim_key"
)
9.3 Co-located Joins
Ensuring Data Co-location:
# Write tables with same bucketing
for table_name, df in [("orders", orders_df), ("order_items", items_df)]:
    df.write \
      .bucketBy(100, "order_id") \
      .sortBy("order_id") \
      .mode("overwrite") \
      .saveAsTable(table_name)

# Read and join - no shuffle needed
orders = spark.table("orders")
items = spark.table("order_items")
result = orders.join(items, "order_id")  # Bucket join, no shuffle!
9.4 Shuffle Hash vs Sort-Merge
Join Strategy Selection:
# Force shuffle hash join (good for medium tables, one fits in memory)
spark.conf.set("spark.sql.join.preferSortMergeJoin", "false")

# Force sort-merge join (default, good for large tables)
spark.conf.set("spark.sql.join.preferSortMergeJoin", "true")

# Use hint for specific joins
result = df1.hint("shuffle_hash").join(df2, "key")
10. Catalyst Optimizer Hints
10.1 Join Hints
Available Join Hints:
	Hint
	Join Type
	Use When

	`BROADCAST`
	Broadcast Hash
	Small table, avoid shuffle

	`MERGE`
	Sort Merge
	Large tables, need sort

	`SHUFFLE_HASH`
	Shuffle Hash
	Medium tables, one fits in memory

	`SHUFFLE_REPLICATE_NL`
	Nested Loop
	Non-equi joins



# Broadcast hint
result = df1.join(df2.hint("broadcast"), "key")

# Sort-merge hint
result = df1.hint("merge").join(df2, "key")

# Shuffle hash hint
result = df1.hint("shuffle_hash").join(df2, "key")

# SQL syntax
spark.sql("""
    SELECT /*+ BROADCAST(small) */ *
    FROM large JOIN small ON large.key = small.key
""")
10.2 Coalesce Hints
# Coalesce hint for reducing partitions
result = df.hint("coalesce", 10).select(...)

# SQL syntax
spark.sql("""
    SELECT /*+ COALESCE(10) */ *
    FROM large_table
""")
10.3 Repartition Hints
# Repartition hint
result = df.hint("repartition", 100).join(...)

# Repartition by column
result = df.hint("repartition_by_range", 100, col("date")).select(...)

# SQL syntax
spark.sql("""
    SELECT /*+ REPARTITION(100, key) */ *
    FROM large_table
""")
11. Data Skew Patterns
11.1 Detecting Skew
Skew Detection Techniques:
# Check partition sizes
from pyspark.sql.functions import spark_partition_id, count

df.groupBy(spark_partition_id().alias("partition")) \
  .agg(count("*").alias("count")) \
  .orderBy("count", ascending=False) \
  .show()

# Check key distribution
df.groupBy("join_key") \
  .count() \
  .orderBy("count", ascending=False) \
  .show(20)

# Identify skewed keys
skew_threshold = df.count() / df.rdd.getNumPartitions() * 10  # 10x average

skewed_keys = df.groupBy("key") \
    .count() \
    .filter(col("count") > skew_threshold) \
    .select("key") \
    .collect()
11.2 Salting Technique
Complete Salting Implementation:
from pyspark.sql import functions as F
from pyspark.sql.types import ArrayType, IntegerType

def apply_salting(large_df, small_df, join_key, skewed_keys, num_salts=10):
    """
    Apply salting technique to handle skewed joins
    """
    # Salt the large DataFrame
    large_salted = large_df.withColumn(
        "salt",
        F.when(
            F.col(join_key).isin(skewed_keys),
            (F.rand() * num_salts).cast("int")
        ).otherwise(F.lit(0))
    ).withColumn(
        "salted_key",
        F.concat_ws("_", F.col(join_key), F.col("salt"))
    )

    # Explode the small DataFrame
    salt_array = F.array([F.lit(i) for i in range(num_salts)])

    small_exploded = small_df.withColumn(
        "salt_values",
        F.when(
            F.col(join_key).isin(skewed_keys),
            salt_array
        ).otherwise(F.array(F.lit(0)))
    ).select(
        "*",
        F.explode("salt_values").alias("salt")
    ).withColumn(
        "salted_key",
        F.concat_ws("_", F.col(join_key), F.col("salt"))
    ).drop("salt_values")

    # Join on salted key
    result = large_salted.join(
        small_exploded.drop(join_key),
        "salted_key"
    ).drop("salted_key", "salt")

    return result
11.3 Isolation Approach
Separate Processing for Skewed Keys:
# Identify skewed keys
skewed_keys = ["hot_key_1", "hot_key_2"]

# Split data
skewed_large = large_df.filter(col("key").isin(skewed_keys))
normal_large = large_df.filter(~col("key").isin(skewed_keys))

skewed_small = small_df.filter(col("key").isin(skewed_keys))
normal_small = small_df.filter(~col("key").isin(skewed_keys))

# Process skewed keys with broadcast (small side should be manageable)
skewed_result = skewed_large.join(broadcast(skewed_small), "key")

# Process normal keys with standard join
normal_result = normal_large.join(normal_small, "key")

# Union results
result = skewed_result.union(normal_result)
11.4 AQE Skew Handling
Enabling Adaptive Skew Join:
# Enable AQE and skew join optimization
spark.conf.set("spark.sql.adaptive.enabled", "true")
spark.conf.set("spark.sql.adaptive.skewJoin.enabled", "true")

# Tune detection thresholds
spark.conf.set("spark.sql.adaptive.skewJoin.skewedPartitionFactor", "5")
spark.conf.set("spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes", "256MB")

# AQE will automatically:
# 1. Detect skewed partitions after shuffle
# 2. Split skewed partitions into smaller ones
# 3. Replicate matching data from other side
12. Pipeline Optimization
12.1 Stage Consolidation
Minimizing Stage Count:
# BAD: Multiple stages from separate operations
df1 = df.groupBy("a").agg(sum("x"))    # Stage 1
df2 = df.groupBy("b").agg(sum("y"))    # Stage 2
result = df1.join(df2, ...)            # Stage 3

# GOOD: Single aggregation stage where possible
result = df.groupBy("a", "b").agg(
    sum("x").alias("sum_x"),
    sum("y").alias("sum_y")
)  # Single stage for aggregation
12.2 Lazy Evaluation Benefits
Leveraging Lazy Evaluation:
# Spark doesn't execute until action is called
df = spark.read.parquet("data/")       # No execution
df = df.filter(col("year") == 2024)    # No execution
df = df.select("id", "value")          # No execution
df = df.groupBy("id").agg(sum("value")) # No execution

# Catalyst optimizes the entire plan
# Single execution with all optimizations applied
result = df.collect()  # NOW execution happens
12.3 Action Minimization
Reducing Action Calls:
# BAD: Multiple actions = multiple jobs
count = df.count()                # Job 1
first_row = df.first()            # Job 2
sample = df.take(10)              # Job 3

# GOOD: Combine into fewer actions
stats = df.agg(
    count("*").alias("total"),
    first("*").alias("first_row")
).collect()[0]

total = stats["total"]
first_row = stats["first_row"]

# Or cache if multiple diverse actions needed
df.cache()
count = df.count()
df.show(10)
df.write.parquet("output/")
df.unpersist()
13. Real-World Optimization Examples
13.1 ETL Pipeline Optimization
Before Optimization:
# Slow ETL pipeline
raw = spark.read.parquet("raw_data/")
filtered = raw.filter(col("date") >= "2024-01-01")
enriched = filtered.join(dim_table, "dim_key")
aggregated = enriched.groupBy("category").agg(sum("amount"))
final = aggregated.join(another_dim, "category")
final.write.parquet("output/")
After Optimization:
# Optimized ETL pipeline

# 1. Push filters and projections early
raw = spark.read.parquet("raw_data/") \
    .select("dim_key", "category", "amount", "date") \
    .filter(col("date") >= "2024-01-01")

# 2. Broadcast small dimension tables
dim_table_broadcast = broadcast(
    dim_table.select("dim_key", "dim_attr")
)
another_dim_broadcast = broadcast(another_dim)

# 3. Optimize join order
enriched = raw.join(dim_table_broadcast, "dim_key")

# 4. Aggregate then join (reduce data before second join)
aggregated = enriched.groupBy("category").agg(
    sum("amount").alias("total_amount"),
    count("*").alias("record_count")
)

# 5. Final enrichment with broadcast
final = aggregated.join(another_dim_broadcast, "category")

# 6. Optimize output partitioning
final.repartition(10).write \
    .mode("overwrite") \
    .parquet("output/")
13.2 Aggregation Query Optimization
Before:
# Slow aggregation with multiple passes
sales_by_region = df.groupBy("region").agg(sum("sales"))
sales_by_product = df.groupBy("product").agg(sum("sales"))
sales_by_date = df.groupBy("date").agg(sum("sales"))

# Three separate shuffles!
After:
# Single pass with cube/rollup or multiple aggregations

# Option 1: Use cube for multi-dimensional aggregation
from pyspark.sql.functions import cube

result = df.cube("region", "product", "date") \
    .agg(sum("sales").alias("total_sales"))

# Option 2: Cache and reuse
df.cache()
sales_by_region = df.groupBy("region").agg(sum("sales"))
sales_by_product = df.groupBy("product").agg(sum("sales"))
sales_by_date = df.groupBy("date").agg(sum("sales"))
df.unpersist()
13.3 Multi-Join Query Optimization
Before:
# Unoptimized multi-join
result = fact_table \
    .join(dim_date, "date_key") \
    .join(dim_product, "product_key") \
    .join(dim_store, "store_key") \
    .join(dim_customer, "customer_key")
After:
# Optimized multi-join

# 1. Broadcast all dimension tables (assuming they're small)
result = fact_table \
    .join(broadcast(dim_date), "date_key") \
    .join(broadcast(dim_product), "product_key") \
    .join(broadcast(dim_store), "store_key") \
    .join(broadcast(dim_customer), "customer_key")

# 2. If some dimensions are large, filter fact table first
result = fact_table \
    .filter(col("date_key").between("2024-01-01", "2024-12-31")) \
    .join(broadcast(dim_date), "date_key") \
    .join(broadcast(dim_product), "product_key") \
    .join(dim_store, "store_key") \  # Large dimension, sort-merge
    .join(broadcast(dim_customer), "customer_key")
14. Optimization Checklist
Pre-Development Checklist
[ ] Understand data sizes and growth patterns
[ ] Identify join keys and their cardinality
[ ] Check for potential data skew
[ ] Plan caching strategy
[ ] Set appropriate shuffle partitions
Code Review Checklist
[ ] Filters pushed as early as possible
[ ] Only required columns selected
[ ] Broadcast joins used for small tables
[ ] No accidental cartesian products
[ ] UDFs minimized, built-in functions preferred
[ ] Appropriate caching with unpersist
[ ] No collect() on large datasets
Performance Testing Checklist
[ ] Review Spark UI for stage count
[ ] Check shuffle read/write sizes
[ ] Verify partition sizes are balanced
[ ] Monitor GC time
[ ] Validate no data skew in tasks
15. Troubleshooting Slow DAGs
Common Issues and Solutions
	Symptom
	Possible Cause
	Solution

	Single slow task
	Data skew
	Use salting or AQE

	Many small tasks
	Too many partitions
	Coalesce

	High shuffle write
	Missing filter pushdown
	Filter earlier

	OOM errors
	Large broadcast/collect
	Reduce data size

	Long GC pauses
	Memory pressure
	Increase memory, tune GC

	Many stages
	Multiple shuffles
	Combine operations



Debug Commands
# Explain query plan
df.explain(mode="extended")

# Check partition count
df.rdd.getNumPartitions()

# Sample partition sizes
df.rdd.mapPartitions(lambda x: [sum(1 for _ in x)]).collect()

# Verify broadcast
spark.sparkContext.getConf().get("spark.sql.autoBroadcastJoinThreshold")
16. Glossary
	Term
	Definition

	**Action**
	Operation triggering DAG execution

	**Catalyst**
	Spark SQL query optimizer

	**Coalesce**
	Reduce partitions without shuffle

	**DAG**
	Directed Acyclic Graph of operations

	**Narrow Transformation**
	No shuffle required

	**Partition Pruning**
	Skip reading unnecessary partitions

	**Predicate Pushdown**
	Push filters to data source

	**Repartition**
	Redistribute data with shuffle

	**Shuffle**
	Data redistribution between stages

	**Skew**
	Uneven data distribution

	**Stage**
	Set of tasks without shuffle boundary

	**Wide Transformation**
	Requires shuffle



Document Information
	Attribute
	Value

	Document ID
	MTD-SPARK-DAG-001

	Version
	1.0

	Status
	Final

	Classification
	Internal

	Owner
	Data Engineering Practice

	Last Updated
	January 2026



This document is proprietary to Mastech Digital and intended for internal use and client delivery.
image1.png
#MAST=CH
DIGITAL








