[image:]

Technical Guide

PySpark Partitioning Strategy Guide

Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice

Table of Contents
[Executive Summary](#1-executive-summary)
[Partitioning Fundamentals](#2-partitioning-fundamentals)
2.1 [What is Partitioning](#21-what-is-partitioning)
2.2 [Why Partitioning Matters](#22-why-partitioning-matters)
2.3 [Types of Partitioning](#23-types-of-partitioning)
[In-Memory Partitioning](#3-in-memory-partitioning)
3.1 [RDD Partitions](#31-rdd-partitions)
3.2 [DataFrame Partitions](#32-dataframe-partitions)
3.3 [Partition Discovery](#33-partition-discovery)
[Hash Partitioning](#4-hash-partitioning)
4.1 [Hash Function Mechanics](#41-hash-function-mechanics)
4.2 [When to Use Hash Partitioning](#42-when-to-use-hash-partitioning)
4.3 [Implementation](#43-implementation)
4.4 [Limitations](#44-limitations)
[Range Partitioning](#5-range-partitioning)
5.1 [Range Partitioner Mechanics](#51-range-partitioner-mechanics)
5.2 [When to Use Range Partitioning](#52-when-to-use-range-partitioning)
5.3 [Implementation](#53-implementation)
5.4 [Sampling Strategy](#54-sampling-strategy)
[Storage Partitioning](#6-storage-partitioning)
6.1 [Directory-Based Partitioning](#61-directory-based-partitioning)
6.2 [Partition Column Selection](#62-partition-column-selection)
6.3 [Partition Pruning](#63-partition-pruning)
6.4 [Dynamic Partition Inserts](#64-dynamic-partition-inserts)
[Bucketing](#7-bucketing)
7.1 [Bucketing vs Partitioning](#71-bucketing-vs-partitioning)
7.2 [Bucket Implementation](#72-bucket-implementation)
7.3 [Bucket Joins](#73-bucket-joins)
7.4 [Bucketing Best Practices](#74-bucketing-best-practices)
[Partition Sizing](#8-partition-sizing)
8.1 [Optimal Partition Size](#81-optimal-partition-size)
8.2 [Partition Count Formulas](#82-partition-count-formulas)
8.3 [Small File Problem](#83-small-file-problem)
8.4 [Large Partition Problem](#84-large-partition-problem)
[Repartition Operations](#9-repartition-operations)
9.1 [repartition() vs coalesce()](#91-repartition-vs-coalesce)
9.2 [Repartition by Column](#92-repartition-by-column)
9.3 [Repartition by Range](#93-repartition-by-range)
9.4 [Cost of Repartitioning](#94-cost-of-repartitioning)
[Partitioning for Joins](#10-partitioning-for-joins)
10.1 [Co-Partitioning](#101-co-partitioning)
10.2 [Pre-Shuffle Optimization](#102-pre-shuffle-optimization)
10.3 [Broadcast vs Shuffle](#103-broadcast-vs-shuffle)
[Partitioning for Aggregations](#11-partitioning-for-aggregations)
11.1 [Group By Optimization](#111-group-by-optimization)
11.2 [Window Functions](#112-window-functions)
11.3 [Distinct Operations](#113-distinct-operations)
[Data Skew and Partitioning](#12-data-skew-and-partitioning)
12.1 [Detecting Skew](#121-detecting-skew)
12.2 [Handling Skewed Partitions](#122-handling-skewed-partitions)
12.3 [Salting Technique](#123-salting-technique)
[Custom Partitioners](#13-custom-partitioners)
13.1 [When to Use Custom Partitioners](#131-when-to-use-custom-partitioners)
13.2 [Implementation](#132-implementation)
13.3 [Examples](#133-examples)
[Partitioning Patterns](#14-partitioning-patterns)
14.1 [Time-Series Data](#141-time-series-data)
14.2 [Geographic Data](#142-geographic-data)
14.3 [Multi-Tenant Data](#143-multi-tenant-data)
14.4 [Event Data](#144-event-data)
[Configuration Reference](#15-configuration-reference)
[Troubleshooting Guide](#16-troubleshooting-guide)
[Quick Reference](#17-quick-reference)
1. Executive Summary
Partitioning is one of the most critical aspects of Apache Spark performance optimization. Proper partitioning strategy determines how data is distributed across the cluster, affecting parallelism, shuffle operations, and query performance.
Key Partitioning Principles:
Right-size partitions: Target 128-256MB per partition
Partition by query patterns: Align partitioning with common filter/join columns
Minimize shuffles: Co-partition tables that are frequently joined
Avoid over-partitioning: Too many small partitions create overhead
Consider data skew: Uneven partitions cause stragglers
This guide covers all aspects of partitioning in PySpark, from fundamental concepts to advanced optimization strategies.
2. Partitioning Fundamentals
2.1 What is Partitioning
Definition:
Partitioning is the process of dividing data into smaller, manageable chunks called partitions that can be processed in parallel across cluster nodes.
┌───┐
│ Data Partitioning Overview │
└───┘

Original Dataset (100 GB):
┌───┐
│ │
│ Complete Dataset │
│ │
└───┘
 │
 Partitioning (200 partitions)
 │
 ┌──────────┬──────────┼──────────┬──────────┐
 ▼ ▼ ▼ ▼ ▼
 ┌───────┐ ┌───────┐ ┌───────┐ ┌───────┐ ┌───────┐
 │Part 0 │ │Part 1 │ │Part 2 │ │ ... │ │Part199│
 │500 MB │ │500 MB │ │500 MB │ │ │ │500 MB │
 └───────┘ └───────┘ └───────┘ └───────┘ └───────┘
 │ │ │ │ │
 ▼ ▼ ▼ ▼ ▼
 ┌───────┐ ┌───────┐ ┌───────┐ ┌───────┐ ┌───────┐
 │Task 0 │ │Task 1 │ │Task 2 │ │ ... │ │Task199│
 │Exec 1 │ │Exec 2 │ │Exec 3 │ │ │ │Exec 10│
 └───────┘ └───────┘ └───────┘ └───────┘ └───────┘

Each partition:
• Processed by one task
• Lives on one executor
• Independent of other partitions (within stage)
2.2 Why Partitioning Matters
Impact on Performance:
	Aspect
	Poor Partitioning
	Good Partitioning

	Parallelism
	Limited by few partitions
	Fully utilized cluster

	Memory
	OOM from large partitions
	Manageable partition sizes

	Shuffle
	Excessive data movement
	Minimized network I/O

	Skew
	Stragglers slow job
	Balanced task durations

	I/O
	Full table scans
	Partition pruning

Performance Difference:
┌───┐
│ Partitioning Impact Example │
└───┘

Query: SELECT * FROM sales WHERE date = '2024-01-15'
Data: 10 TB total, 365 days

Without Date Partitioning:
├─ Scan: 10 TB (entire table)
├─ Time: 45 minutes
└─ Cost: High I/O and compute

With Date Partitioning:
├─ Scan: 27 GB (one day's data)
├─ Time: 45 seconds
└─ Cost: 99.7% less I/O

Improvement: 60x faster!
2.3 Types of Partitioning
Partitioning Taxonomy:
┌───┐
│ Partitioning Types │
└───┘

 Partitioning
 │
 ┌────────────────┼────────────────┐
 ▼ ▼ ▼
 ┌───────────────┐ ┌───────────────┐ ┌───────────────┐
 │ In-Memory │ │ Storage │ │ Bucketing │
 │ Partitioning │ │ Partitioning │ │ │
 └───────┬───────┘ └───────┬───────┘ └───────────────┘
 │ │
 ┌─────┴─────┐ ┌─────┴─────┐
 ▼ ▼ ▼ ▼
 ┌───────┐ ┌───────┐ ┌───────┐ ┌───────┐
 │ Hash │ │ Range │ │ Hive │ │Static │
 │ │ │ │ │ Style │ │ │
 └───────┘ └───────┘ └───────┘ └───────┘
	Type
	Description
	Use Case

	Hash
	Partition by hash of key
	Even distribution

	Range
	Partition by value ranges
	Sorted data, range queries

	Storage
	Directory-based partitioning
	Query pruning

	Bucketing
	Fixed-size hash buckets
	Shuffle-free joins

3. In-Memory Partitioning
3.1 RDD Partitions
RDD Partition Concepts:
Check number of partitions
rdd.getNumPartitions()

View partition contents
def show_partition(index, iterator):
 print(f"Partition {index}: {list(iterator)}")
 yield index

rdd.mapPartitionsWithIndex(show_partition).collect()

Partitioner information
print(rdd.partitioner) # None, HashPartitioner, or RangePartitioner
Default Partitioning:
┌───┐
│ Default Partition Count Rules │
└───┘

Source Default Partitions
──
Local collection (parallelize) spark.default.parallelism
HDFS file Number of HDFS blocks
Parquet file Number of row groups
After shuffle spark.sql.shuffle.partitions (200)
After join Max of input partitions or shuffle
After coalesce Specified number
After repartition Specified number
3.2 DataFrame Partitions
DataFrame Partition Operations:
Check partitions
print(f"Number of partitions: {df.rdd.getNumPartitions()}")

Analyze partition distribution
from pyspark.sql.functions import spark_partition_id, count

df.groupBy(spark_partition_id().alias("partition_id")) \
 .agg(count("*").alias("count")) \
 .orderBy("partition_id") \
 .show()

Example output:
+------------+-------+
|partition_id| count|
+------------+-------+
| 0| 125000|
| 1| 124500|
| 2| 125500|
| 3| 125000|
+------------+-------+
3.3 Partition Discovery
Analyzing Partition Sizes:
def analyze_partitions(df):
 """Analyze partition distribution of a DataFrame"""
 import sys

 def partition_stats(iterator):
 count = 0
 size = 0
 for row in iterator:
 count += 1
 # Approximate row size
 size += sys.getsizeof(row)
 yield (count, size)

 stats = df.rdd.mapPartitions(partition_stats).collect()

 counts = [s[0] for s in stats]
 sizes = [s[1] for s in stats]

 print(f"Total Partitions: {len(stats)}")
 print(f"Row Count - Min: {min(counts)}, Max: {max(counts)}, "
 f"Avg: {sum(counts)/len(counts):.0f}")
 print(f"Size (bytes) - Min: {min(sizes)}, Max: {max(sizes)}, "
 f"Avg: {sum(sizes)/len(sizes):.0f}")
 print(f"Skew Ratio: {max(counts)/min(counts):.2f}x")

Usage
analyze_partitions(df)
4. Hash Partitioning
4.1 Hash Function Mechanics
How Hash Partitioning Works:
┌───┐
│ Hash Partitioning Mechanics │
└───┘

For key K and numPartitions N:
 partition_id = hash(K) % N

Example with N = 4 partitions:

Key Hash Value hash % 4 Partition
──
"A" 65 65 % 4 = 1 Partition 1
"B" 66 66 % 4 = 2 Partition 2
"C" 67 67 % 4 = 3 Partition 3
"D" 68 68 % 4 = 0 Partition 0
"AA" 2080 2080 % 4 = 0 Partition 0
"AB" 2081 2081 % 4 = 1 Partition 1

Result:
┌───────────┬───────────┬───────────┬───────────┐
│Partition 0│Partition 1│Partition 2│Partition 3│
│ D, AA │ A, AB │ B │ C │
└───────────┴───────────┴───────────┴───────────┘
4.2 When to Use Hash Partitioning
Ideal Use Cases:
	Scenario
	Benefit

	Join on key column
	Co-located data, no shuffle

	GroupBy on key column
	Local aggregation

	Distinct on key column
	Local deduplication

	Evenly distributed keys
	Balanced partitions

Avoid When:
	Scenario
	Problem

	Highly skewed keys
	Unbalanced partitions

	Range queries
	Data not sorted

	Small number of keys
	Some partitions empty

4.3 Implementation
Hash Partitioning in PySpark:
DataFrame repartition (hash partitioning)
df_partitioned = df.repartition(100, "customer_id")

Multiple columns
df_partitioned = df.repartition(100, "customer_id", "product_id")

RDD with explicit HashPartitioner
from pyspark import HashPartitioner

rdd_partitioned = rdd.partitionBy(100, HashPartitioner(100))

Verify partitioning
print(df_partitioned.rdd.getNumPartitions()) # 100
4.4 Limitations
Hash Partitioning Limitations:
┌───┐
│ Hash Partitioning Limitations │
└───┘

1. Skewed Key Distribution:

 Keys: ["popular", "popular", "popular", ..., "rare1", "rare2"]

 Partition 0: 1,000,000 records (all "popular")
 Partition 1: 5 records
 Partition 2: 3 records
 ...

 → Severe imbalance!

2. Null Handling:

 All null keys go to partition 0
 → Can cause significant skew if many nulls

3. Cardinality Mismatch:

 Keys: [1, 2, 3, 4, 5]
 Partitions: 100

 → 95 partitions will be empty!

4. No Range Query Optimization:

 WHERE key BETWEEN 'A' AND 'M'
 → Must scan all partitions (no pruning)
5. Range Partitioning
5.1 Range Partitioner Mechanics
How Range Partitioning Works:
┌───┐
│ Range Partitioning Mechanics │
└───┘

Step 1: Sample data to find range boundaries
Step 2: Sort boundaries
Step 3: Assign records to partitions based on range

Example with 4 partitions and dates:

Sample → Boundaries: [2024-01-08, 2024-01-15, 2024-01-22]

Partition Assignment:
┌───┐
│ Partition 0 │ Partition 1 │ Partition 2 │ Partition 3 │
│ < 2024-01-08│ 01-08 to │ 01-15 to │ >= 2024-01-22 │
│ │ 01-14 │ 01-21 │ │
│ Jan 1-7 │ Jan 8-14 │ Jan 15-21 │ Jan 22-31 │
└───┘

Data:
2024-01-05 → Partition 0
2024-01-10 → Partition 1
2024-01-18 → Partition 2
2024-01-25 → Partition 3
5.2 When to Use Range Partitioning
Ideal Use Cases:
	Scenario
	Benefit

	Time-series data
	Range queries efficient

	Sorted output needed
	Data pre-sorted

	Range joins
	Minimize shuffle

	Ordered keys
	Natural boundaries

5.3 Implementation
Range Partitioning in PySpark:
DataFrame repartition by range
df_range_partitioned = df.repartitionByRange(100, "date")

Multiple columns
df_range_partitioned = df.repartitionByRange(100, "year", "month")

With explicit ordering
from pyspark.sql.functions import asc, desc
df_range_partitioned = df.repartitionByRange(100, asc("date"))

RDD with RangePartitioner
from pyspark import RangePartitioner

sortByKey implicitly uses RangePartitioner
rdd_sorted = rdd.sortByKey(numPartitions=100)
5.4 Sampling Strategy
Range Boundary Determination:
Spark samples data to determine range boundaries
Default sample size: 20 records per partition × numPartitions

Configure sampling
spark.conf.set("spark.sql.execution.rangeExchange.sampleSizePerPartition", "20")

For skewed data, increase sample size
spark.conf.set("spark.sql.execution.rangeExchange.sampleSizePerPartition", "100")

Manual boundary specification (RDD)
boundaries = [100, 200, 300, 400] # Creates 5 partitions

def range_partitioner(key):
 for i, boundary in enumerate(boundaries):
 if key < boundary:
 return i
 return len(boundaries)

rdd_partitioned = rdd.partitionBy(len(boundaries) + 1, range_partitioner)
6. Storage Partitioning
6.1 Directory-Based Partitioning
Hive-Style Partitioning:
┌───┐
│ Directory-Based Partitioning │
└───┘

Physical Directory Structure:

data/
├── year=2023/
│ ├── month=01/
│ │ ├── part-00000.parquet
│ │ └── part-00001.parquet
│ ├── month=02/
│ │ └── part-00000.parquet
│ └── ...
├── year=2024/
│ ├── month=01/
│ │ ├── part-00000.parquet
│ │ ├── part-00001.parquet
│ │ └── part-00002.parquet
│ └── ...
└── ...

Query: WHERE year = 2024 AND month = 1
→ Only reads: data/year=2024/month=01/*.parquet
→ Skips: All other directories (partition pruning)
Creating Partitioned Tables:
Write partitioned data
df.write \
 .partitionBy("year", "month") \
 .mode("overwrite") \
 .parquet("data/sales/")

Read partitioned data
df = spark.read.parquet("data/sales/")
Partition columns automatically discovered

Query with partition pruning
filtered = df.filter((col("year") == 2024) & (col("month") == 1))
Only reads relevant partitions!
6.2 Partition Column Selection
Guidelines for Partition Columns:
	Criterion
	Good Choice
	Poor Choice

	Cardinality
	100-10,000 values
	10 or 10M values

	Query Pattern
	Frequently filtered
	Rarely used

	Data Distribution
	Relatively even
	Highly skewed

	Column Type
	Date, category
	High-precision timestamp

Partition Column Examples:
GOOD: Date-based partitioning
df.write.partitionBy("year", "month").parquet("sales/")
Creates ~12-60 partitions per year

GOOD: Category partitioning
df.write.partitionBy("region", "product_category").parquet("sales/")
Creates manageable number of partitions

BAD: Too fine-grained
df.write.partitionBy("year", "month", "day", "hour").parquet("sales/")
Creates 8,760 partitions per year (small files!)

BAD: High cardinality
df.write.partitionBy("customer_id").parquet("sales/")
Creates millions of partitions!

BAD: Skewed column
df.write.partitionBy("country").parquet("sales/")
90% of data in one partition (US)
6.3 Partition Pruning
How Partition Pruning Works:
┌───┐
│ Partition Pruning │
└───┘

Query: SELECT * FROM sales WHERE year = 2024 AND month BETWEEN 1 AND 3

Without Partition Pruning:
├─ Scan all directories
├─ Read all files
├─ Filter after reading
└─ Time: 10 minutes

With Partition Pruning:
├─ Identify matching partitions: year=2024/month=1,2,3
├─ Only read those directories
├─ Skip year=2023/*, year=2024/month=4-12
└─ Time: 30 seconds

Verification in Spark:
df.filter((col("year") == 2024) & (col("month").between(1, 3))).explain()

Look for:
PartitionFilters: [year#10 = 2024, month#11 >= 1, month#11 <= 3]
6.4 Dynamic Partition Inserts
Dynamic vs Static Partitioning:
Static partitioning - partition values specified
df.write \
 .partitionBy("year", "month") \
 .mode("overwrite") \
 .parquet("data/")
Overwrites ALL partitions!

Dynamic partitioning - partition values from data
df.write \
 .partitionBy("year", "month") \
 .mode("append") \
 .parquet("data/")
Adds to existing partitions

Overwrite specific partitions only (Spark 3.0+)
df.write \
 .option("partitionOverwriteMode", "dynamic") \
 .partitionBy("year", "month") \
 .mode("overwrite") \
 .parquet("data/")
Only overwrites partitions present in df!
Dynamic Partition Configuration:
Enable dynamic partition mode
spark.conf.set("spark.sql.sources.partitionOverwriteMode", "dynamic")

Control maximum partitions per task
spark.conf.set("hive.exec.max.dynamic.partitions", "10000")
spark.conf.set("hive.exec.max.dynamic.partitions.pernode", "1000")
7. Bucketing
7.1 Bucketing vs Partitioning
Comparison:
┌───┐
│ Bucketing vs Partitioning Comparison │
└───┘

 Partitioning Bucketing
───
Organization Directories Files within directory
Cardinality Low (< 10,000) Any (fixed buckets)
Column Values Discrete categories Any hashable type
Pruning Yes (filter pushdown) No
Shuffle-free Join No Yes (same buckets)
Sorted Data No Optional
Use Case Query filtering Join optimization
───

Visual Comparison:

Partitioning: Bucketing:
data/ data/
├── region=US/ ├── part-00000_bucket-0.parquet
│ └── part-00000.parquet ├── part-00000_bucket-1.parquet
├── region=EU/ ├── part-00000_bucket-2.parquet
│ └── part-00000.parquet └── part-00000_bucket-3.parquet
└── region=APAC/
 └── part-00000.parquet
7.2 Bucket Implementation
Creating Bucketed Tables:
Write bucketed table
df.write \
 .bucketBy(100, "customer_id") \
 .sortBy("customer_id") \
 .mode("overwrite") \
 .saveAsTable("bucketed_customers")

Combined partitioning and bucketing
df.write \
 .partitionBy("year", "month") \
 .bucketBy(50, "customer_id") \
 .sortBy("customer_id") \
 .mode("overwrite") \
 .saveAsTable("sales_bucketed")

Read bucketed table
bucketed_df = spark.table("bucketed_customers")
7.3 Bucket Joins
Shuffle-Free Joins with Buckets:
Create two bucketed tables with same bucket configuration
orders.write \
 .bucketBy(100, "customer_id") \
 .sortBy("customer_id") \
 .saveAsTable("orders_bucketed")

customers.write \
 .bucketBy(100, "customer_id") \
 .sortBy("customer_id") \
 .saveAsTable("customers_bucketed")

Join without shuffle!
orders_df = spark.table("orders_bucketed")
customers_df = spark.table("customers_bucketed")

Enable bucket join
spark.conf.set("spark.sql.bucketing.enabled", "true")
spark.conf.set("spark.sql.autoBroadcastJoinThreshold", "-1") # Disable broadcast

result = orders_df.join(customers_df, "customer_id")

Verify no shuffle in plan
result.explain()
Should show: SortMergeJoin without Exchange
7.4 Bucketing Best Practices
Bucket Configuration Guidelines:
	Factor
	Recommendation

	Bucket Count
	2-4x cluster parallelism

	Bucket Column
	Join/Group key column

	Sort Column
	Same as bucket column

	File Format
	Parquet or ORC

	Table Type
	Managed (saveAsTable)

Common Pitfalls:
PITFALL 1: Mismatched bucket counts
Table A: 100 buckets, Table B: 200 buckets → Shuffle required!

PITFALL 2: Reading as files instead of table
Wrong:
df = spark.read.parquet("warehouse/bucketed_table/") # Loses bucket info!

Correct:
df = spark.table("bucketed_table")

PITFALL 3: Not sorting within buckets
Sorting enables more efficient merge joins
df.write.bucketBy(100, "key").sortBy("key").saveAsTable("t")
8. Partition Sizing
8.1 Optimal Partition Size
Partition Size Guidelines:
┌───┐
│ Optimal Partition Size Ranges │
└───┘

 Too Small Optimal Too Large
 ◄────────────►◄───────────►◄──────────────►

Partition Size: 1 MB 128-256 MB 1+ GB
 ──►

Too Small (< 64MB):
• High scheduling overhead
• Inefficient I/O (small reads)
• Driver bottleneck (tracking)
• Underutilized executors

Optimal (128-256MB):
• Efficient parallelism
• Good memory utilization
• Balanced task durations
• Reasonable file sizes

Too Large (> 512MB):
• Memory pressure
• Long GC pauses
• Task failures on OOM
• Poor parallelism
8.2 Partition Count Formulas
Calculating Optimal Partitions:
def calculate_optimal_partitions(data_size_gb, target_partition_mb=200):
 """Calculate optimal partition count"""
 data_size_mb = data_size_gb * 1024
 partitions = data_size_mb / target_partition_mb
 return max(int(partitions), 1)

Example calculations:
10 GB data → 10 * 1024 / 200 = 51 partitions
100 GB data → 100 * 1024 / 200 = 512 partitions
1 TB data → 1000 * 1024 / 200 = 5120 partitions

Also consider cluster parallelism
def calculate_partitions_for_cluster(data_size_gb, total_cores,
 target_partition_mb=200):
 """Balance data size and parallelism"""
 by_size = calculate_optimal_partitions(data_size_gb, target_partition_mb)
 by_cores = total_cores * 2 # 2 partitions per core minimum

 return max(by_size, by_cores)

Example:
10 GB, 50 cores → max(51, 100) = 100 partitions
100 GB, 50 cores → max(512, 100) = 512 partitions
8.3 Small File Problem
Detecting Small Files:
Check partition sizes
def check_partition_sizes(df):
 """Analyze partition size distribution"""
 from pyspark.sql.functions import spark_partition_id, sum as _sum

 stats = df.withColumn("partition", spark_partition_id()) \
 .groupBy("partition") \
 .count() \
 .agg(
 _sum("count").alias("total_rows"),
 count("partition").alias("num_partitions")
).collect()[0]

 avg_rows = stats["total_rows"] / stats["num_partitions"]
 print(f"Partitions: {stats['num_partitions']}")
 print(f"Avg rows per partition: {avg_rows:.0f}")

 # Warning if too many small partitions
 if avg_rows < 100000: # Assuming ~1KB per row
 print("WARNING: Partitions may be too small!")
Fixing Small Files:
Compact small partitions
df_compacted = df.coalesce(target_partitions)

Or repartition for even distribution
df_compacted = df.repartition(target_partitions)

Write with max records per file
df.write \
 .option("maxRecordsPerFile", 1000000) \
 .parquet("output/")

Use AQE coalescing
spark.conf.set("spark.sql.adaptive.enabled", "true")
spark.conf.set("spark.sql.adaptive.coalescePartitions.enabled", "true")
spark.conf.set("spark.sql.adaptive.advisoryPartitionSizeInBytes", "128MB")
8.4 Large Partition Problem
Detecting Large Partitions:
Check for oversized partitions
from pyspark.sql.functions import spark_partition_id, count

partition_sizes = df.groupBy(spark_partition_id().alias("partition")) \
 .agg(count("*").alias("count")) \
 .orderBy(desc("count"))

partition_sizes.show(10)

Identify skewed partitions
stats = partition_sizes.agg(
 avg("count").alias("avg"),
 max("count").alias("max"),
 min("count").alias("min")
).collect()[0]

skew_ratio = stats["max"] / stats["avg"]
print(f"Skew ratio: {skew_ratio:.2f}x")

if skew_ratio > 5:
 print("WARNING: Significant partition skew detected!")
Fixing Large Partitions:
Increase partition count
df_split = df.repartition(current_partitions * 2)

Or repartition by key to spread data
df_split = df.repartition(500, "skewed_key")

For writes, limit records per file
df.write \
 .option("maxRecordsPerFile", 500000) \
 .parquet("output/")
9. Repartition Operations
9.1 repartition() vs coalesce()
Comparison:
┌───┐
│ repartition() vs coalesce() Comparison │
└───┘

 repartition() coalesce()
───
Shuffle Yes (full shuffle) No (narrow)
Increase partitions Yes No
Decrease partitions Yes Yes
Even distribution Yes No (combines existing)
Performance cost High Low
Use case Rebalancing Reducing partitions
───

Visual Example:

Initial: 6 partitions, uneven
[100] [200] [50] [150] [75] [25] Total: 600 records

repartition(3): coalesce(3):
[200] [200] [200] [100+200] [50+150] [75+25]
(balanced via shuffle) (combined without shuffle)
Usage Guidelines:
Use coalesce to REDUCE partitions (no shuffle)
df_small = df.coalesce(10) # From 100 to 10 partitions

Use repartition to INCREASE partitions
df_more = df.repartition(500) # From 100 to 500 partitions

Use repartition for REBALANCING (even when reducing)
df_balanced = df.repartition(50) # Ensures even distribution

Use repartition with COLUMN for co-partitioning
df_by_key = df.repartition(100, "join_key") # Hash partitioning
9.2 Repartition by Column
Column-Based Repartitioning:
Single column
df_partitioned = df.repartition(200, "customer_id")

Multiple columns (composite key)
df_partitioned = df.repartition(200, "customer_id", "product_id")

Benefit: Co-located data for subsequent operations
All records with same customer_id are in same partition

Example: Efficient group by after repartition
df.repartition(200, "customer_id") \
 .groupBy("customer_id") \
 .agg(sum("amount"))
Group by doesn't require additional shuffle!
9.3 Repartition by Range
Range-Based Repartitioning:
Repartition by range (sorted partitions)
df_range = df.repartitionByRange(100, "date")

With sort direction
from pyspark.sql.functions import asc, desc
df_range = df.repartitionByRange(100, asc("date"))

Multiple columns
df_range = df.repartitionByRange(100, "year", "month", "day")

Benefit: Sorted partitions for range operations
Partition 0: Jan 1-3
Partition 1: Jan 4-6
etc.
9.4 Cost of Repartitioning
Performance Considerations:
┌───┐
│ Repartitioning Cost Analysis │
└───┘

Scenario: 100GB DataFrame, 200 partitions to 500 partitions

repartition(500):
├─ Shuffle Write: 100GB (full data)
├─ Network Transfer: ~100GB
├─ Shuffle Read: 100GB
├─ Time: 5-10 minutes
└─ Use when: Need even distribution, different partitioning

coalesce(100):
├─ Shuffle: None
├─ Network Transfer: 0
├─ Time: Nearly instant
└─ Use when: Just reducing partition count

Best Practices:
1. Avoid repartitioning in tight loops
2. Repartition once before multiple operations on same key
3. Use coalesce when reducing partitions and balance not critical
4. Consider caching after expensive repartition
10. Partitioning for Joins
10.1 Co-Partitioning
Co-Partitioning Strategy:
┌───┐
│ Co-Partitioning for Joins │
└───┘

Without Co-Partitioning:

 Table A (random) Table B (random)
 ┌─────────────────┐ ┌─────────────────┐
 │ Partition 0 │ │ Partition 0 │
 │ key: 1,5,9 │ │ key: 2,4,7 │
 ├─────────────────┤ ├─────────────────┤
 │ Partition 1 │ │ Partition 1 │
 │ key: 2,6,10 │ │ key: 1,5,8 │
 └─────────────────┘ └─────────────────┘
 │ │
 └───── SHUFFLE ─────────┘
 │
 Join requires full shuffle of both tables!

With Co-Partitioning:

 Table A (by key) Table B (by key)
 ┌─────────────────┐ ┌─────────────────┐
 │ Partition 0 │ │ Partition 0 │
 │ key: 1,2,3 │◄──────│ key: 1,2,3 │
 ├─────────────────┤ ├─────────────────┤
 │ Partition 1 │ │ Partition 1 │
 │ key: 4,5,6 │◄──────│ key: 4,5,6 │
 └─────────────────┘ └─────────────────┘
 │ │
 └─── LOCAL JOIN ────────┘
 │
 No shuffle needed - data is co-located!
10.2 Pre-Shuffle Optimization
Pre-Partitioning for Multiple Joins:
Scenario: Multiple joins on customer_id
num_partitions = 200

Pre-partition all tables once
orders = spark.read.parquet("orders/") \
 .repartition(num_partitions, "customer_id")
customers = spark.read.parquet("customers/") \
 .repartition(num_partitions, "customer_id")
transactions = spark.read.parquet("transactions/") \
 .repartition(num_partitions, "customer_id")

Cache partitioned DataFrames
orders.cache()
customers.cache()
transactions.cache()

Subsequent joins use existing partitioning
result1 = orders.join(customers, "customer_id") # No shuffle
result2 = orders.join(transactions, "customer_id") # No shuffle
result3 = customers.join(transactions, "customer_id") # No shuffle
10.3 Broadcast vs Shuffle
Join Strategy Decision:
┌───┐
│ Join Strategy Selection │
└───┘

 Small Table (< 10MB)?
 │
 ┌─────────────┴─────────────┐
 Yes No
 │ │
 ▼ ▼
 Broadcast Join Tables Co-Partitioned?
 (No shuffle) │
 ┌───────────┴───────────┐
 Yes No
 │ │
 ▼ ▼
 Local Join Shuffle Join
 (No shuffle) (Full shuffle)
Broadcast join (small table)
from pyspark.sql.functions import broadcast
result = large_df.join(broadcast(small_df), "key")

Pre-partitioned join (medium-large tables)
large_a = large_a.repartition(200, "key")
large_b = large_b.repartition(200, "key")
result = large_a.join(large_b, "key")

Bucketed join (repeated joins)
Pre-create bucketed tables, then join via table API
11. Partitioning for Aggregations
11.1 Group By Optimization
Partition-Aware Aggregation:
Without pre-partitioning
df.groupBy("category").agg(sum("amount"))
Full shuffle to bring all same-category rows together

With pre-partitioning
df.repartition("category") \
 .groupBy("category") \
 .agg(sum("amount"))
If already partitioned by category, no additional shuffle
Two-Phase Aggregation:
┌───┐
│ Two-Phase Aggregation │
└───┘

Phase 1: Local aggregation (per partition)
┌────────────────┐ ┌────────────────┐ ┌────────────────┐
│ Partition 0 │ │ Partition 1 │ │ Partition 2 │
│ A:100, A:50 │ │ A:75, B:30 │ │ B:20, B:40 │
│ B:25 │ │ │ │ A:25 │
│ ───────────── │ │ ───────────── │ │ ───────────── │
│ Local Sum: │ │ Local Sum: │ │ Local Sum: │
│ A:150, B:25 │ │ A:75, B:30 │ │ A:25, B:60 │
└───────┬────────┘ └───────┬────────┘ └───────┬────────┘
 │ │ │
 └───────────────────┼───────────────────┘
 │ Shuffle (partial results only)
 ▼
Phase 2: Global aggregation
┌───┐
│ A: 150 + 75 + 25 = 250 │
│ B: 25 + 30 + 60 = 115 │
└───┘

Benefit: Shuffle only aggregated values, not all records!
11.2 Window Functions
Window Function Partitioning:
from pyspark.sql.window import Window
from pyspark.sql.functions import row_number, rank

Window partitioned by customer_id
window = Window.partitionBy("customer_id").orderBy("date")

All rows with same customer_id must be on same partition
df.withColumn("row_num", row_number().over(window))

Optimization: Pre-partition data
df_optimized = df.repartition("customer_id")
df_optimized.withColumn("row_num", row_number().over(window))
Avoids additional shuffle if already partitioned
11.3 Distinct Operations
Distinct Partitioning:
Distinct requires shuffle to group identical rows
df.select("category", "product").distinct()

Optimization for large datasets:
1. Pre-partition by distinct columns
df.repartition("category", "product") \
 .dropDuplicates(["category", "product"])

2. Use approximate distinct for counting
from pyspark.sql.functions import approx_count_distinct
df.agg(approx_count_distinct("customer_id", rsd=0.05))
12. Data Skew and Partitioning
12.1 Detecting Skew
Skew Detection Methods:
Method 1: Analyze partition sizes
from pyspark.sql.functions import spark_partition_id, count

partition_stats = df.groupBy(spark_partition_id().alias("partition")) \
 .agg(count("*").alias("records")) \
 .agg(
 min("records").alias("min"),
 max("records").alias("max"),
 avg("records").alias("avg"),
 stddev("records").alias("stddev")
).collect()[0]

print(f"Min: {partition_stats['min']}")
print(f"Max: {partition_stats['max']}")
print(f"Avg: {partition_stats['avg']:.0f}")
print(f"Skew Ratio: {partition_stats['max']/partition_stats['avg']:.2f}x")

Method 2: Check key distribution
df.groupBy("key_column") \
 .count() \
 .orderBy(desc("count")) \
 .show(20)

Method 3: Check for nulls
null_count = df.filter(col("key_column").isNull()).count()
total_count = df.count()
print(f"Null ratio: {null_count/total_count:.2%}")
12.2 Handling Skewed Partitions
Skew Mitigation Strategies:
┌───┐
│ Skew Handling Strategies │
└───┘

Strategy 1: Increase Partitions
───
Before: 100 partitions, one has 90% data
After: 1000 partitions, skewed key spread across ~10 partitions
Limitation: Doesn't help if one KEY has 90%

Strategy 2: Enable AQE Skew Handling
───
spark.sql.adaptive.skewJoin.enabled = true
Spark automatically detects and splits skewed partitions
Best for: Join operations

Strategy 3: Salting
───
Add random suffix to keys, then process, then combine
Works for: Aggregations and joins
Trade-off: More complex code

Strategy 4: Isolate and Process Separately
───
Filter out skewed keys, process separately, union results
Works when: Few identifiable skewed keys
12.3 Salting Technique
Complete Salting Implementation:
from pyspark.sql import functions as F

def salt_and_aggregate(df, group_col, agg_col, num_salts=10):
 """
 Aggregate with salting to handle skew
 """
 # Step 1: Add salt to each row
 df_salted = df.withColumn(
 "salt",
 (F.rand() * num_salts).cast("int")
).withColumn(
 "salted_key",
 F.concat_ws("_", F.col(group_col), F.col("salt"))
)

 # Step 2: Aggregate by salted key (distributed)
 partial_agg = df_salted.groupBy("salted_key", group_col) \
 .agg(F.sum(agg_col).alias("partial_sum"))

 # Step 3: Aggregate to final result
 final_agg = partial_agg.groupBy(group_col) \
 .agg(F.sum("partial_sum").alias("total"))

 return final_agg

Usage
result = salt_and_aggregate(df, "customer_id", "amount", num_salts=20)
Salted Join Implementation:
def salted_join(large_df, small_df, join_key, skewed_keys, num_salts=10):
 """
 Join with salting for skewed keys
 """
 # Salt the large DataFrame
 large_salted = large_df.withColumn(
 "salt",
 F.when(
 F.col(join_key).isin(skewed_keys),
 (F.rand() * num_salts).cast("int")
).otherwise(F.lit(0))
).withColumn(
 "salted_key",
 F.concat_ws("_", F.col(join_key), F.col("salt"))
)

 # Explode the small DataFrame for skewed keys
 salt_array = F.array([F.lit(i) for i in range(num_salts)])

 small_exploded = small_df.withColumn(
 "salt_values",
 F.when(
 F.col(join_key).isin(skewed_keys),
 salt_array
).otherwise(F.array(F.lit(0)))
).select(
 "*",
 F.explode("salt_values").alias("salt")
).withColumn(
 "salted_key",
 F.concat_ws("_", F.col(join_key), F.col("salt"))
).drop("salt_values")

 # Join on salted key
 result = large_salted.join(
 small_exploded.drop(join_key, "salt"),
 "salted_key"
).drop("salted_key", "salt")

 return result
13. Custom Partitioners
13.1 When to Use Custom Partitioners
Custom Partitioner Use Cases:
	Scenario
	Standard Approach
	Custom Partitioner Benefit

	Geographic data
	Hash on region
	Group nearby regions

	Time-series
	Hash on timestamp
	Group by time windows

	Multi-tenant
	Hash on tenant
	Isolate tenants

	Weighted distribution
	Even hash
	Account for data volume

13.2 Implementation
Custom Partitioner in PySpark:
RDD-level custom partitioner
def geographic_partitioner(num_partitions):
 """Partition by geographic region"""
 region_map = {
 'US-EAST': 0, 'US-WEST': 0, # North America
 'UK': 1, 'DE': 1, 'FR': 1, # Europe
 'JP': 2, 'CN': 2, 'AU': 2, # Asia-Pacific
 }

 def partition_func(key):
 return region_map.get(key, num_partitions - 1)

 return partition_func

Usage
rdd_partitioned = rdd.partitionBy(4, geographic_partitioner(4))
13.3 Examples
Time-Based Partitioner:
def time_window_partitioner(window_hours=24):
 """Partition by time window"""
 from datetime import datetime

 def partition_func(timestamp):
 if timestamp is None:
 return 0
 # Convert to hours since epoch
 hours = int(timestamp.timestamp() / 3600)
 # Partition by window
 return hours // window_hours

 return partition_func

Usage: Group data by day
rdd_by_day = rdd.partitionBy(365, time_window_partitioner(24))
Weighted Partitioner:
def weighted_partitioner(key_weights, num_partitions):
 """
 Partition accounting for key frequency/weight
 Heavy keys get more partitions
 """
 # Pre-compute partition assignments
 assignments = {}
 current_partition = 0

 for key, weight in sorted(key_weights.items(), key=lambda x: -x[1]):
 num_key_partitions = max(1, int(weight * num_partitions))
 assignments[key] = list(range(current_partition,
 current_partition + num_key_partitions))
 current_partition += num_key_partitions

 def partition_func(key):
 if key in assignments:
 # Distribute within key's partitions
 return assignments[key][hash(str(key)) % len(assignments[key])]
 return hash(key) % num_partitions

 return partition_func
14. Partitioning Patterns
14.1 Time-Series Data
Time-Series Partitioning Strategy:
Storage partitioning by date
df.write \
 .partitionBy("year", "month", "day") \
 .parquet("timeseries/")

Query patterns supported:
- Daily queries: year=2024/month=01/day=15
- Monthly queries: year=2024/month=01/*
- Yearly queries: year=2024/*/*

For streaming ingestion
df.write \
 .partitionBy("date") \
 .mode("append") \
 .option("partitionOverwriteMode", "dynamic") \
 .parquet("timeseries/")
14.2 Geographic Data
Partition by region hierarchy
df.write \
 .partitionBy("continent", "country") \
 .parquet("geo_data/")

For analysis by proximity
Use custom partitioner or geohash
df.withColumn("geohash",
 F.expr("substr(geohash_encode(lat, lon), 1, 4)")) \
 .write \
 .partitionBy("geohash") \
 .parquet("location_data/")
14.3 Multi-Tenant Data
Partition by tenant for isolation
df.write \
 .partitionBy("tenant_id") \
 .parquet("tenant_data/")

Query automatically filters to single tenant
tenant_data = spark.read.parquet("tenant_data/") \
 .filter(col("tenant_id") == "tenant_123")
Only reads tenant_123 partition

Consider bucketing within tenants for joins
df.write \
 .partitionBy("tenant_id") \
 .bucketBy(50, "customer_id") \
 .saveAsTable("tenant_customers")
14.4 Event Data
Event stream partitioning
events.write \
 .partitionBy("event_date", "event_type") \
 .parquet("events/")

Supports:
- All events on a date
- Specific event types on a date
- All events of a type across dates
15. Configuration Reference
Key Partitioning Configurations:
	Configuration
	Default
	Description

	`spark.sql.shuffle.partitions`
	200
	Partitions for shuffles

	`spark.default.parallelism`
	Total cores
	Default RDD partitions

	`spark.sql.files.maxPartitionBytes`
	128MB
	Max partition size for file reads

	`spark.sql.files.minPartitionNum`
	None
	Minimum partitions for file reads

	`spark.sql.adaptive.enabled`
	true (3.2+)
	Enable AQE

	`spark.sql.adaptive.coalescePartitions.enabled`
	true
	Auto-coalesce

	`spark.sql.adaptive.advisoryPartitionSizeInBytes`
	64MB
	Target AQE partition size

16. Troubleshooting Guide
	Problem
	Symptom
	Solution

	Too many small partitions
	High scheduling overhead
	Use coalesce or AQE

	Too few large partitions
	OOM, slow tasks
	Repartition to more

	Skewed partitions
	Straggler tasks
	Salting, AQE skew handling

	Shuffle too large
	Network bottleneck
	Pre-partition, broadcast

	No partition pruning
	Full table scans
	Check filter expressions

	Bucket join not working
	Shuffle in plan
	Same bucket count, use table API

17. Quick Reference
Partition Count Guidelines:
	Data Size
	Recommended Partitions

	< 1 GB
	10-50

	1-10 GB
	50-200

	10-100 GB
	200-500

	100 GB - 1 TB
	500-2000

	> 1 TB
	2000+

Quick Decision Tree:
Need more partitions? → repartition()
Need fewer partitions? → coalesce() (or repartition if balance needed)
Joining two tables? → Ensure same partitioning
Writing to storage? → partitionBy() on query columns
Repeated joins on same key? → bucketBy()
Document Information
	Attribute
	Value

	Document ID
	MTD-SPARK-PART-001

	Version
	1.0

	Status
	Final

	Classification
	Internal

	Owner
	Data Engineering Practice

	Last Updated
	January 2026

This document is proprietary to Mastech Digital and intended for internal use and client delivery.
image1.png
#MAST=CH
DIGITAL

