[image:]

Technical Guide

PySpark Performance Optimization Guide

Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice

Table of Contents
[Executive Summary](#1-executive-summary)
[Performance Fundamentals](#2-performance-fundamentals)
2.1 [Understanding Spark Performance](#21-understanding-spark-performance)
2.2 [Performance Metrics](#22-performance-metrics)
2.3 [Bottleneck Identification](#23-bottleneck-identification)
[Data Serialization](#3-data-serialization)
3.1 [Serialization Formats](#31-serialization-formats)
3.2 [Kryo Configuration](#32-kryo-configuration)
3.3 [Arrow Optimization](#33-arrow-optimization)
[I/O Optimization](#4-io-optimization)
4.1 [File Format Selection](#41-file-format-selection)
4.2 [Compression Strategies](#42-compression-strategies)
4.3 [Partitioning for I/O](#43-partitioning-for-io)
4.4 [Small File Problem](#44-small-file-problem)
[Memory Optimization](#5-memory-optimization)
5.1 [Memory Configuration](#51-memory-configuration)
5.2 [GC Tuning](#52-gc-tuning)
5.3 [Spill Prevention](#53-spill-prevention)
5.4 [Off-Heap Memory](#54-off-heap-memory)
[CPU Optimization](#6-cpu-optimization)
6.1 [Parallelism Tuning](#61-parallelism-tuning)
6.2 [Task Scheduling](#62-task-scheduling)
6.3 [Vectorized Operations](#63-vectorized-operations)
[PySpark-Specific Optimizations](#7-pyspark-specific-optimizations)
7.1 [Python UDF Performance](#71-python-udf-performance)
7.2 [Pandas UDFs](#72-pandas-udfs)
7.3 [PyArrow Integration](#73-pyarrow-integration)
7.4 [Native Functions vs UDFs](#74-native-functions-vs-udfs)
[Query Optimization](#8-query-optimization)
8.1 [Adaptive Query Execution](#81-adaptive-query-execution)
8.2 [Query Plan Analysis](#82-query-plan-analysis)
8.3 [Statistics Collection](#83-statistics-collection)
8.4 [Hint Usage](#84-hint-usage)
[Network Optimization](#9-network-optimization)
9.1 [Shuffle Optimization](#91-shuffle-optimization)
9.2 [Data Locality](#92-data-locality)
9.3 [Compression for Network](#93-compression-for-network)
[Storage Optimization](#10-storage-optimization)
10.1 [Caching Best Practices](#101-caching-best-practices)
10.2 [Delta Lake Optimization](#102-delta-lake-optimization)
10.3 [Data Layout Optimization](#103-data-layout-optimization)
[Join Performance](#11-join-performance)
11.1 [Join Strategy Selection](#111-join-strategy-selection)
11.2 [Broadcast Threshold Tuning](#112-broadcast-threshold-tuning)
11.3 [Skew Mitigation](#113-skew-mitigation)
[Aggregation Performance](#12-aggregation-performance)
12.1 [Aggregation Strategies](#121-aggregation-strategies)
12.2 [Window Function Optimization](#122-window-function-optimization)
12.3 [Distinct Optimization](#123-distinct-optimization)
[Streaming Performance](#13-streaming-performance)
13.1 [Micro-batch Tuning](#131-micro-batch-tuning)
13.2 [State Store Optimization](#132-state-store-optimization)
13.3 [Watermark Configuration](#133-watermark-configuration)
[Configuration Tuning](#14-configuration-tuning)
14.1 [Critical Parameters](#141-critical-parameters)
14.2 [Workload-Specific Configs](#142-workload-specific-configs)
14.3 [Configuration Templates](#143-configuration-templates)
[Profiling and Monitoring](#15-profiling-and-monitoring)
15.1 [Spark UI Analysis](#151-spark-ui-analysis)
15.2 [Metrics Collection](#152-metrics-collection)
15.3 [Performance Baselines](#153-performance-baselines)
[Common Performance Issues](#16-common-performance-issues)
[Performance Tuning Workflow](#17-performance-tuning-workflow)
[Quick Reference](#18-quick-reference)
1. Executive Summary
PySpark performance optimization requires understanding the interplay between Spark's distributed execution model and Python's runtime characteristics. This guide provides comprehensive strategies for achieving optimal performance in PySpark applications.
Key Optimization Areas:
Avoid Python UDFs when possible: Native Spark functions are 10-100x faster
Use Pandas UDFs for complex logic: Arrow-based vectorization provides significant speedup
Optimize serialization: Kryo and Arrow reduce data transfer overhead
Tune memory and GC: Proper configuration prevents OOM and GC pauses
Enable AQE: Adaptive Query Execution provides runtime optimization
This guide covers PySpark-specific considerations alongside general Spark optimization techniques.
2. Performance Fundamentals
2.1 Understanding Spark Performance
Performance Factors Hierarchy:
┌───┐
│ Performance Impact Factors │
└───┘

 High Impact
 ▲
 │
 ┌───────────────────┴───────────────────┐
 │ Algorithm & Data Model │
 │ • Join strategies │
 │ • Aggregation approaches │
 │ • Data partitioning │
 └───────────────────┬───────────────────┘
 │
 ┌───────────────────┴───────────────────┐
 │ Data Layout & I/O │
 │ • File formats (Parquet, Delta) │
 │ • Compression │
 │ • Partition pruning │
 └───────────────────┬───────────────────┘
 │
 ┌───────────────────┴───────────────────┐
 │ Resource Configuration │
 │ • Memory allocation │
 │ • Executor sizing │
 │ • Parallelism settings │
 └───────────────────┬───────────────────┘
 │
 ┌───────────────────┴───────────────────┐
 │ Code Optimization │
 │ • Native functions vs UDFs │
 │ • Caching strategy │
 │ • Serialization │
 └───────────────────┴───────────────────┘
 │
 ▼
 Low Impact
2.2 Performance Metrics
Key Metrics to Track:
	Metric
	Target
	Warning Threshold
	Critical

	Task Duration
	< 1 minute
	> 5 minutes
	> 15 minutes

	GC Time Ratio
	< 5%
	> 10%
	> 20%

	Shuffle Spill
	0
	> 100MB/task
	> 1GB/task

	Task Skew
	< 2x median
	> 5x median
	> 10x median

	Executor Utilization
	> 70%
	< 50%
	< 30%

	Data Locality
	PROCESS_LOCAL
	NODE_LOCAL
	ANY

2.3 Bottleneck Identification
Diagnostic Decision Tree:
┌───┐
│ Bottleneck Identification │
└───┘

 Job is slow
 │
 ┌─────────────┴─────────────┐
 │ Check Spark UI Stages │
 └─────────────┬─────────────┘
 │
 ┌─────────────────┼─────────────────┐
 ▼ ▼ ▼
 Few slow tasks? All tasks slow? High shuffle?
 │ │ │
 ▼ ▼ ▼
 DATA SKEW RESOURCE ISSUE NETWORK/IO BOUND
 • Salting • Add memory • Reduce shuffle
 • AQE skew join • Add executors • Broadcast joins
 • Isolate hot keys • Tune GC • Better compression
3. Data Serialization
3.1 Serialization Formats
Comparison of Serializers:
	Serializer
	Speed
	Size
	Compatibility
	Use Case

	Java
	Slow
	Large
	Universal
	Default, debugging

	Kryo
	Fast
	Small
	Requires registration
	Production

	Arrow
	Very Fast
	Small
	Pandas/Python
	PySpark UDFs

3.2 Kryo Configuration
Enabling and Configuring Kryo:
from pyspark.sql import SparkSession

spark = SparkSession.builder \
 .config("spark.serializer", "org.apache.spark.serializer.KryoSerializer") \
 .config("spark.kryo.registrationRequired", "false") \
 .config("spark.kryoserializer.buffer.max", "1024m") \
 .config("spark.kryoserializer.buffer", "64k") \
 .getOrCreate()

Register custom classes for better performance
spark.sparkContext._conf.registerKryoClasses([
 # Your custom classes here
])
Kryo Performance Improvement:
┌───┐
│ Serialization Performance Comparison │
└───┘

Operation: Shuffle 10GB of data

Java Serialization:
├─ Serialization time: 120 seconds
├─ Serialized size: 12GB
└─ Total shuffle time: 180 seconds

Kryo Serialization:
├─ Serialization time: 45 seconds
├─ Serialized size: 8GB
└─ Total shuffle time: 90 seconds

Improvement: 2x faster, 33% smaller
3.3 Arrow Optimization
Arrow for PySpark:
Enable Arrow optimization
spark.conf.set("spark.sql.execution.arrow.pyspark.enabled", "true")
spark.conf.set("spark.sql.execution.arrow.pyspark.fallback.enabled", "true")
spark.conf.set("spark.sql.execution.arrow.maxRecordsPerBatch", "10000")

Arrow-optimized toPandas()
pdf = df.toPandas() # Uses Arrow when enabled

Arrow-optimized createDataFrame()
spark_df = spark.createDataFrame(pandas_df) # Uses Arrow when enabled
Arrow Performance Impact:
	Operation
	Without Arrow
	With Arrow
	Improvement

	toPandas() (1M rows)
	45 sec
	3 sec
	15x

	createDataFrame (1M rows)
	60 sec
	4 sec
	15x

	Pandas UDF execution
	Baseline
	3-10x faster
	Significant

4. I/O Optimization
4.1 File Format Selection
Format Comparison:
	Format
	Read Speed
	Write Speed
	Compression
	Schema Evolution
	Best For

	Parquet
	Excellent
	Good
	Excellent
	Good
	Analytics

	ORC
	Excellent
	Good
	Excellent
	Good
	Hive integration

	Delta
	Excellent
	Good
	Excellent
	Excellent
	ACID, streaming

	Avro
	Good
	Excellent
	Good
	Excellent
	Schema evolution

	JSON
	Poor
	Good
	Poor
	Flexible
	Debugging

	CSV
	Poor
	Good
	Poor
	None
	Interchange

Parquet Optimization:
Optimized Parquet write
df.write \
 .mode("overwrite") \
 .option("compression", "snappy") \
 .option("parquet.block.size", 134217728) # 128MB row groups \
 .option("parquet.page.size", 1048576) # 1MB pages \
 .partitionBy("year", "month") \
 .parquet("output/")

Optimized Parquet read
df = spark.read \
 .option("mergeSchema", "false") # Faster if schema is consistent \
 .parquet("input/")
4.2 Compression Strategies
Compression Codec Selection:
	Codec
	Compression Ratio
	Speed
	Splittable
	Use Case

	Snappy
	Medium
	Fast
	Yes*
	Default choice

	LZ4
	Medium
	Fastest
	Yes*
	Speed priority

	ZSTD
	High
	Medium
	Yes*
	Storage priority

	Gzip
	High
	Slow
	No
	Archive

Configure compression
spark.conf.set("spark.sql.parquet.compression.codec", "snappy")
spark.conf.set("spark.io.compression.codec", "lz4") # Shuffle compression

For storage-optimized writes
df.write \
 .option("compression", "zstd") \
 .parquet("archived/")
4.3 Partitioning for I/O
Optimal Partition Strategy:
Partition by high-cardinality time columns
df.write \
 .partitionBy("year", "month", "day") \
 .parquet("output/")

Query with partition pruning
filtered = spark.read.parquet("output/") \
 .filter((col("year") == 2024) & (col("month") == 1))
Only reads /output/year=2024/month=1/ directory!

Avoid over-partitioning
BAD: Too many partitions
df.write.partitionBy("year", "month", "day", "hour", "customer_id") # Millions of tiny files!

GOOD: Reasonable partition cardinality
df.write.partitionBy("year", "month") # Manageable number of partitions
4.4 Small File Problem
Detecting Small Files:
Check file sizes
import subprocess

def check_file_sizes(path):
 result = subprocess.run(
 ["hdfs", "dfs", "-ls", "-R", path],
 capture_output=True, text=True
)
 files = [line for line in result.stdout.split('\n') if line and not line.startswith('d')]
 sizes = [int(line.split()[4]) for line in files if len(line.split()) > 4]

 print(f"Total files: {len(sizes)}")
 print(f"Average size: {sum(sizes)/len(sizes)/1024/1024:.2f} MB")
 print(f"Files < 1MB: {sum(1 for s in sizes if s < 1024*1024)}")
Fixing Small Files:
Compact small files
small_files_df = spark.read.parquet("small_files_path/")
compacted_df = small_files_df.repartition(100) # Reduce to 100 partitions
compacted_df.write.mode("overwrite").parquet("compacted_path/")

Prevent small files on write
df.coalesce(target_files).write.parquet("output/")

Use AQE for automatic coalescing
spark.conf.set("spark.sql.adaptive.enabled", "true")
spark.conf.set("spark.sql.adaptive.coalescePartitions.enabled", "true")
spark.conf.set("spark.sql.adaptive.coalescePartitions.minPartitionSize", "64MB")
5. Memory Optimization
5.1 Memory Configuration
Memory Configuration Guide:
Comprehensive memory configuration
spark = SparkSession.builder \
 .config("spark.executor.memory", "16g") \
 .config("spark.executor.memoryOverhead", "4g") # 25% for PySpark \
 .config("spark.memory.fraction", "0.6") \
 .config("spark.memory.storageFraction", "0.5") \
 .config("spark.driver.memory", "8g") \
 .config("spark.driver.maxResultSize", "4g") \
 .getOrCreate()
Memory Allocation Visualization:
┌───┐
│ Executor Memory Layout (16GB heap + 4GB overhead) │
└───┘

┌──┐
│ Total Container: 20GB │
├──┤
│ │
│ ┌──┐ │
│ │ JVM Heap: 16GB │ │
│ │ ┌──┐ │ │
│ │ │ Reserved: 300MB │ │ │
│ │ ├──┤ │ │
│ │ │ User Memory: 6.28GB (40%) │ │ │
│ │ │ • UDF data, internal metadata │ │ │
│ │ ├──┤ │ │
│ │ │ Spark Memory: 9.42GB (60%) │ │ │
│ │ │ ┌─────────────────────┬─────────────────────────────┐│ │ │
│ │ │ │ Storage: 4.71GB │ Execution: 4.71GB ││ │ │
│ │ │ │ (50% of Spark mem) │ (50% of Spark mem) ││ │ │
│ │ │ └─────────────────────┴─────────────────────────────┘│ │ │
│ │ └──┘ │ │
│ └──┘ │
│ │
│ ┌──┐ │
│ │ Memory Overhead: 4GB │ │
│ │ • Python worker processes │ │
│ │ • Native libraries, Netty buffers │ │
│ │ • JVM metaspace, thread stacks │ │
│ └──┘ │
│ │
└──┘
5.2 GC Tuning
GC Configuration for Spark:
G1GC Configuration (recommended for Spark)
gc_options = """
-XX:+UseG1GC
-XX:G1HeapRegionSize=16M
-XX:InitiatingHeapOccupancyPercent=35
-XX:ConcGCThreads=4
-XX:+ParallelRefProcEnabled
-XX:+UnlockDiagnosticVMOptions
-XX:+G1SummarizeConcMark
"""

spark = SparkSession.builder \
 .config("spark.executor.extraJavaOptions", gc_options.replace('\n', ' ')) \
 .getOrCreate()
GC Tuning Guidelines:
	Heap Size
	Recommended GC
	Region Size
	Notes

	< 4GB
	G1GC or Parallel
	4M
	Default works well

	4-16GB
	G1GC
	8-16M
	Standard configuration

	16-32GB
	G1GC
	16-32M
	Tune IHOP

	> 32GB
	G1GC
	32M
	Consider off-heap

5.3 Spill Prevention
Monitoring and Preventing Spills:
Increase execution memory to prevent spills
spark.conf.set("spark.memory.storageFraction", "0.3") # Less for cache, more for execution

Monitor spill metrics in Spark UI
Stage details -> Shuffle Spill (Memory) and Shuffle Spill (Disk)

Reduce data per task
spark.conf.set("spark.sql.shuffle.partitions", "400") # More partitions = less data per task

If spilling is unavoidable, use fast local storage
spark.conf.set("spark.local.dir", "/fast/ssd/spark-temp")
5.4 Off-Heap Memory
Enabling Off-Heap Storage:
Enable off-heap memory
spark = SparkSession.builder \
 .config("spark.memory.offHeap.enabled", "true") \
 .config("spark.memory.offHeap.size", "4g") \
 .getOrCreate()

Benefits:
• Reduced GC pressure
• More predictable performance
• Better for large heaps

Considerations:
• Must explicitly configure size
• Not automatically tuned
• Requires careful monitoring
6. CPU Optimization
6.1 Parallelism Tuning
Parallelism Configuration:
Default parallelism for RDD operations
spark.conf.set("spark.default.parallelism", str(total_cores * 2))

Shuffle partitions for DataFrame operations
spark.conf.set("spark.sql.shuffle.partitions", "200") # Adjust based on data size

Adaptive partitioning (recommended)
spark.conf.set("spark.sql.adaptive.enabled", "true")
spark.conf.set("spark.sql.adaptive.coalescePartitions.enabled", "true")
Parallelism Guidelines:
┌───┐
│ Parallelism Guidelines │
└───┘

For shuffle operations:
 partitions = max(
 total_cores * 2, # Minimum for CPU utilization
 shuffle_data_gb * 4 # ~250MB per partition
)

Example:
 Cluster: 100 cores
 Shuffle data: 100GB

 By cores: 100 * 2 = 200 partitions
 By data: 100 * 4 = 400 partitions

 Result: 400 partitions (128-256MB each)
6.2 Task Scheduling
Scheduling Optimization:
Locality wait settings
spark.conf.set("spark.locality.wait", "3s")
spark.conf.set("spark.locality.wait.node", "3s")
spark.conf.set("spark.locality.wait.rack", "3s")
spark.conf.set("spark.locality.wait.process", "3s")

For streaming or latency-sensitive workloads
spark.conf.set("spark.locality.wait", "0s") # Don't wait for locality

Fair scheduler for multi-query scenarios
spark.conf.set("spark.scheduler.mode", "FAIR")
6.3 Vectorized Operations
Enabling Vectorization:
Enable vectorized reads
spark.conf.set("spark.sql.parquet.enableVectorizedReader", "true")
spark.conf.set("spark.sql.orc.enableVectorizedReader", "true")

Vectorized batch size
spark.conf.set("spark.sql.inMemoryColumnarStorage.batchSize", "10000")

Enable whole-stage code generation
spark.conf.set("spark.sql.codegen.wholeStage", "true")
7. PySpark-Specific Optimizations
7.1 Python UDF Performance
UDF Performance Comparison:
┌───┐
│ Python UDF Performance Hierarchy │
└───┘

Fastest ───► Slowest

┌──────────────┐ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐
│ Native │ │ Pandas UDF │ │ Vectorized │ │ Scalar │
│ Functions │ │ (Arrow) │ │ Python UDF │ │ Python UDF │
│ │ │ │ │ │ │ │
│ 1x │ │ 3-10x │ │ 10-50x │ │ 50-100x │
│ (baseline) │ │ slower │ │ slower │ │ slower │
└──────────────┘ └──────────────┘ └──────────────┘ └──────────────┘

 Recommended Avoid if Never use
 for complex possible in production
 logic
UDF Anti-Pattern:
from pyspark.sql.functions import udf
from pyspark.sql.types import DoubleType

BAD: Scalar Python UDF
@udf(DoubleType())
def calculate_tax_udf(amount, rate):
 if amount is None or rate is None:
 return None
 return amount * rate

df = df.withColumn("tax", calculate_tax_udf(col("amount"), col("rate")))

GOOD: Native Spark expression
df = df.withColumn("tax", col("amount") * col("rate"))
7.2 Pandas UDFs
Types of Pandas UDFs:
	Type
	Input
	Output
	Use Case

	Scalar
	pandas.Series
	pandas.Series
	Row-wise transforms

	Scalar Iterator
	Iterator[Series]
	Iterator[Series]
	State + batch

	Grouped Map
	pandas.DataFrame
	pandas.DataFrame
	Group operations

	Grouped Agg
	pandas.Series
	Scalar
	Custom aggregations

	Map
	Iterator[DataFrame]
	Iterator[DataFrame]
	Batch operations

Pandas UDF Examples:
from pyspark.sql.functions import pandas_udf
from pyspark.sql.types import DoubleType
import pandas as pd

Scalar Pandas UDF (vectorized)
@pandas_udf(DoubleType())
def vectorized_tax(amount: pd.Series, rate: pd.Series) -> pd.Series:
 return amount * rate

df = df.withColumn("tax", vectorized_tax(col("amount"), col("rate")))

Grouped Map Pandas UDF
from pyspark.sql.types import StructType, StructField, StringType, DoubleType

schema = StructType([
 StructField("group", StringType()),
 StructField("normalized_value", DoubleType())
])

@pandas_udf(schema, PandasUDFType.GROUPED_MAP)
def normalize_group(pdf: pd.DataFrame) -> pd.DataFrame:
 pdf["normalized_value"] = (pdf["value"] - pdf["value"].mean()) / pdf["value"].std()
 return pdf[["group", "normalized_value"]]

normalized = df.groupBy("group").apply(normalize_group)
7.3 PyArrow Integration
Optimal Arrow Configuration:
Enable all Arrow optimizations
spark.conf.set("spark.sql.execution.arrow.pyspark.enabled", "true")
spark.conf.set("spark.sql.execution.arrow.pyspark.fallback.enabled", "true")
spark.conf.set("spark.sql.execution.arrow.maxRecordsPerBatch", "10000")

For mapInPandas operations
spark.conf.set("spark.sql.execution.arrow.pyspark.selfDestruct.enabled", "true")

Optimize batch size based on data
Larger batches = better throughput, more memory
Smaller batches = less memory, more overhead
spark.conf.set("spark.sql.execution.arrow.maxRecordsPerBatch", "50000") # For large data
7.4 Native Functions vs UDFs
Function Selection Guide:
String operations
BAD
@udf(StringType())
def upper_case(s):
 return s.upper() if s else None

GOOD
from pyspark.sql.functions import upper
df.withColumn("upper_name", upper(col("name")))

Math operations
BAD
@udf(DoubleType())
def calculate_distance(x1, y1, x2, y2):
 return ((x2-x1)**2 + (y2-y1)**2)**0.5

GOOD
from pyspark.sql.functions import sqrt, pow
df.withColumn("distance",
 sqrt(pow(col("x2") - col("x1"), 2) + pow(col("y2") - col("y1"), 2))
)

Conditional logic
BAD
@udf(StringType())
def categorize(value):
 if value > 100:
 return "high"
 elif value > 50:
 return "medium"
 return "low"

GOOD
from pyspark.sql.functions import when
df.withColumn("category",
 when(col("value") > 100, "high")
 .when(col("value") > 50, "medium")
 .otherwise("low")
)
8. Query Optimization
8.1 Adaptive Query Execution
Complete AQE Configuration:
Enable AQE
spark.conf.set("spark.sql.adaptive.enabled", "true")

Coalesce shuffle partitions
spark.conf.set("spark.sql.adaptive.coalescePartitions.enabled", "true")
spark.conf.set("spark.sql.adaptive.coalescePartitions.minPartitionSize", "64MB")
spark.conf.set("spark.sql.adaptive.advisoryPartitionSizeInBytes", "128MB")

Skew join handling
spark.conf.set("spark.sql.adaptive.skewJoin.enabled", "true")
spark.conf.set("spark.sql.adaptive.skewJoin.skewedPartitionFactor", "5")
spark.conf.set("spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes", "256MB")

Local shuffle reader
spark.conf.set("spark.sql.adaptive.localShuffleReader.enabled", "true")

Dynamically switch join strategies
spark.conf.set("spark.sql.adaptive.autoBroadcastJoinThreshold", "10MB")
AQE Benefits:
┌───┐
│ AQE Optimizations │
└───┘

1. Dynamic Partition Coalescing
 Before: 200 partitions × 10MB = 2000 small tasks
 After: 20 partitions × 100MB = 20 efficient tasks

2. Skew Join Optimization
 Before: 1 task processes 90% of data (hours)
 After: Skewed partition split into 10 tasks (minutes)

3. Dynamic Join Strategy
 Before: Sort-merge join (large shuffle)
 After: Runtime decision to broadcast (no shuffle)
8.2 Query Plan Analysis
Understanding Execution Plans:
Simple explain
df.explain()

Extended explain with all stages
df.explain(mode="extended")

Formatted explain (Spark 3.0+)
df.explain(mode="formatted")

Cost-based explain
df.explain(mode="cost")

Code generation details
df.explain(mode="codegen")
Key Plan Elements:
== Physical Plan ==
*(2) HashAggregate(keys=[category], functions=[sum(amount)])
+- Exchange hashpartitioning(category, 200) <-- SHUFFLE
 +- *(1) HashAggregate(keys=[category], functions=[partial_sum(amount)])
 +- *(1) Project [category, amount] <-- PROJECTION
 +- *(1) Filter (status = active) <-- FILTER
 +- *(1) ColumnarToRow
 +- FileScan parquet [category,amount,status] <-- SCAN
 Batched: true <-- VECTORIZED
 PushedFilters: [EqualTo(status,active)] <-- PUSHDOWN
8.3 Statistics Collection
Collecting and Using Statistics:
Compute statistics for optimizer
spark.sql("ANALYZE TABLE my_table COMPUTE STATISTICS")

Column-level statistics
spark.sql("ANALYZE TABLE my_table COMPUTE STATISTICS FOR COLUMNS col1, col2")

Check statistics
spark.sql("DESCRIBE EXTENDED my_table").show(truncate=False)

For DataFrames
df.summary().show()

Force statistics usage
spark.conf.set("spark.sql.cbo.enabled", "true")
spark.conf.set("spark.sql.cbo.joinReorder.enabled", "true")
8.4 Hint Usage
Query Hints:
Join hints
df1.hint("broadcast").join(df2, "key")
df1.hint("merge").join(df2, "key")
df1.hint("shuffle_hash").join(df2, "key")

Coalesce/Repartition hints
df.hint("coalesce", 10).select(...)
df.hint("repartition", 100).select(...)
df.hint("repartition_by_range", 100, col("date")).select(...)

SQL hints
spark.sql("""
 SELECT /*+ BROADCAST(small), REPARTITION(100) */
 large.*, small.value
 FROM large_table large
 JOIN small_table small ON large.key = small.key
""")
9. Network Optimization
9.1 Shuffle Optimization
Shuffle Configuration:
Shuffle service
spark.conf.set("spark.shuffle.service.enabled", "true")

Compression
spark.conf.set("spark.shuffle.compress", "true")
spark.conf.set("spark.io.compression.codec", "lz4")

Buffer sizes
spark.conf.set("spark.shuffle.file.buffer", "64k")
spark.conf.set("spark.reducer.maxSizeInFlight", "96m")

Sort-based shuffle
spark.conf.set("spark.shuffle.sort.bypassMergeThreshold", "200")
9.2 Data Locality
Locality Configuration:
Locality preferences
spark.conf.set("spark.locality.wait", "3s")

For HDFS workloads
spark.conf.set("spark.locality.wait.node", "3s")

For streaming/low latency
spark.conf.set("spark.locality.wait", "0s")

Check locality in Spark UI:
Stages -> Task tab -> Locality Level column
9.3 Compression for Network
Network Compression Settings:
Shuffle compression
spark.conf.set("spark.shuffle.compress", "true")
spark.conf.set("spark.io.compression.codec", "lz4") # Fast

Broadcast compression
spark.conf.set("spark.broadcast.compress", "true")

RDD compression
spark.conf.set("spark.rdd.compress", "true")

Choose codec based on priority:
Speed: lz4 > snappy > zstd > gzip
Ratio: zstd > gzip > snappy > lz4
10. Storage Optimization
10.1 Caching Best Practices
Strategic Caching:
Cache with appropriate storage level
from pyspark import StorageLevel

For iterative algorithms
df.persist(StorageLevel.MEMORY_AND_DISK_SER)

For frequently accessed data
df.persist(StorageLevel.MEMORY_ONLY)

For PySpark with memory pressure
df.persist(StorageLevel.MEMORY_AND_DISK_SER)

Always unpersist when done
df.unpersist()

Monitor cache
spark.catalog.clearCache() # Clear all
10.2 Delta Lake Optimization
Delta Lake Performance Tuning:
Enable Delta optimizations
spark.conf.set("spark.databricks.delta.optimizeWrite.enabled", "true")
spark.conf.set("spark.databricks.delta.autoCompact.enabled", "true")

Z-Order clustering
spark.sql("""
 OPTIMIZE delta_table
 ZORDER BY (date, customer_id)
""")

Vacuum old files
spark.sql("VACUUM delta_table RETAIN 168 HOURS")

Enable deletion vectors
spark.conf.set("spark.databricks.delta.properties.defaults.enableDeletionVectors", "true")
10.3 Data Layout Optimization
File Size Optimization:
Target file size
spark.conf.set("spark.sql.files.maxRecordsPerFile", "1000000")

Write with controlled file sizes
df.repartition(100) \ # Control number of files
 .write \
 .option("maxRecordsPerFile", 1000000) \
 .parquet("output/")

Sort within partitions for better compression
df.sortWithinPartitions("sort_column") \
 .write \
 .parquet("output/")
11. Join Performance
11.1 Join Strategy Selection
Join Strategy Decision Matrix:
	Small Table
	Large Table
	Strategy
	Configuration

	< 10MB
	Any
	Broadcast Hash
	Auto or hint

	10-100MB
	> 1GB
	Broadcast Hash
	Increase threshold

	> 100MB
	Similar size
	Sort Merge
	Default

	Skewed
	Any
	Skew Join
	AQE or salting

11.2 Broadcast Threshold Tuning
Increase broadcast threshold for larger dimension tables
spark.conf.set("spark.sql.autoBroadcastJoinThreshold", "100MB")

Disable auto-broadcast
spark.conf.set("spark.sql.autoBroadcastJoinThreshold", "-1")

Force broadcast with hint
from pyspark.sql.functions import broadcast
result = large_df.join(broadcast(medium_df), "key")
11.3 Skew Mitigation
Complete Skew Handling:
Method 1: AQE (simplest)
spark.conf.set("spark.sql.adaptive.enabled", "true")
spark.conf.set("spark.sql.adaptive.skewJoin.enabled", "true")

Method 2: Salting (manual control)
from pyspark.sql import functions as F

num_salts = 10
large_salted = large_df.withColumn(
 "salted_key",
 F.concat(F.col("key"), F.lit("_"), (F.rand() * num_salts).cast("int"))
)

small_exploded = small_df.select(
 "*",
 F.explode(F.array([F.lit(i) for i in range(num_salts)])).alias("salt")
).withColumn(
 "salted_key",
 F.concat(F.col("key"), F.lit("_"), F.col("salt"))
)

result = large_salted.join(small_exploded, "salted_key")
12. Aggregation Performance
12.1 Aggregation Strategies
Efficient Aggregations:
Multiple aggregations in single pass
from pyspark.sql import functions as F

df.groupBy("category").agg(
 F.sum("amount").alias("total"),
 F.avg("amount").alias("average"),
 F.count("*").alias("count"),
 F.max("amount").alias("max_amount"),
 F.min("amount").alias("min_amount"),
 F.stddev("amount").alias("stddev")
)

Use approximate functions for large datasets
df.agg(
 F.approx_count_distinct("user_id", 0.05).alias("approx_users"),
 F.approx_percentile("amount", [0.5, 0.9, 0.99]).alias("percentiles")
)
12.2 Window Function Optimization
Window Function Best Practices:
from pyspark.sql import Window

Define window once, reuse
window_spec = Window.partitionBy("customer_id").orderBy("date")

Multiple window functions with same specification
df = df.withColumn("rank", F.rank().over(window_spec)) \
 .withColumn("row_num", F.row_number().over(window_spec)) \
 .withColumn("prev_amount", F.lag("amount", 1).over(window_spec)) \
 .withColumn("running_total", F.sum("amount").over(window_spec))

For large windows, consider bounded windows
bounded_window = Window.partitionBy("id").orderBy("date").rowsBetween(-7, 0)
df = df.withColumn("7_day_avg", F.avg("value").over(bounded_window))
12.3 Distinct Optimization
Approximate distinct (much faster)
approx_count = df.agg(F.approx_count_distinct("user_id", 0.05)).collect()[0][0]

If exact needed, ensure proper partitioning
df.repartition("distinct_column").dropDuplicates(["distinct_column"])
13. Streaming Performance
13.1 Micro-batch Tuning
Trigger configuration
df.writeStream \
 .trigger(processingTime="10 seconds") \ # Process every 10 seconds
 .start()

For low latency
df.writeStream \
 .trigger(processingTime="1 second") \
 .start()

For throughput
df.writeStream \
 .trigger(processingTime="1 minute") \
 .start()
13.2 State Store Optimization
State store configuration
spark.conf.set("spark.sql.streaming.stateStore.providerClass",
 "org.apache.spark.sql.execution.streaming.state.HDFSBackedStateStoreProvider")
spark.conf.set("spark.sql.streaming.stateStore.minDeltasForSnapshot", "10")

Checkpoint location (use fast storage)
df.writeStream \
 .option("checkpointLocation", "/fast/ssd/checkpoints/my_query") \
 .start()
13.3 Watermark Configuration
from pyspark.sql.functions import window

Set watermark for late data
df.withWatermark("event_time", "10 minutes") \
 .groupBy(window("event_time", "5 minutes")) \
 .agg(F.sum("value"))
14. Configuration Tuning
14.1 Critical Parameters
Top 20 Performance Parameters:
	Parameter
	Default
	Recommendation
	Impact

	spark.sql.shuffle.partitions
	200
	Based on data
	High

	spark.sql.adaptive.enabled
	false (3.0), true (3.2+)
	true
	High

	spark.executor.memory
	1g
	16-32g
	High

	spark.executor.cores
	1
	4-5
	High

	spark.memory.fraction
	0.6
	0.6-0.8
	Medium

	spark.serializer
	Java
	Kryo
	Medium

	spark.sql.autoBroadcastJoinThreshold
	10MB
	50-100MB
	Medium

	spark.sql.adaptive.skewJoin.enabled
	false
	true
	Medium

	spark.dynamicAllocation.enabled
	false
	true
	Medium

	spark.shuffle.compress
	true
	true
	Low

14.2 Workload-Specific Configs
ETL Workload:
etl_config = {
 "spark.sql.shuffle.partitions": "400",
 "spark.sql.adaptive.enabled": "true",
 "spark.executor.memory": "16g",
 "spark.executor.cores": "4",
 "spark.dynamicAllocation.enabled": "true",
 "spark.serializer": "org.apache.spark.serializer.KryoSerializer"
}
ML Workload:
ml_config = {
 "spark.sql.shuffle.partitions": "200",
 "spark.executor.memory": "32g",
 "spark.executor.cores": "5",
 "spark.memory.fraction": "0.7",
 "spark.rdd.compress": "true",
 "spark.kryoserializer.buffer.max": "1024m"
}
14.3 Configuration Templates
def get_optimized_config(workload_type, cluster_size):
 """Return optimized Spark configuration"""

 base_config = {
 "spark.sql.adaptive.enabled": "true",
 "spark.sql.adaptive.coalescePartitions.enabled": "true",
 "spark.serializer": "org.apache.spark.serializer.KryoSerializer",
 "spark.sql.execution.arrow.pyspark.enabled": "true"
 }

 workload_configs = {
 "etl": {
 "spark.executor.memory": "16g",
 "spark.executor.cores": "4",
 "spark.sql.shuffle.partitions": str(cluster_size * 4 * 2)
 },
 "analytics": {
 "spark.executor.memory": "24g",
 "spark.executor.cores": "4",
 "spark.memory.storageFraction": "0.6"
 },
 "ml": {
 "spark.executor.memory": "32g",
 "spark.executor.cores": "5",
 "spark.memory.fraction": "0.7"
 }
 }

 config = {**base_config, **workload_configs.get(workload_type, {})}
 return config
15. Profiling and Monitoring
15.1 Spark UI Analysis
Key UI Sections:
	Section
	What to Look For
	Action

	Jobs
	Failed jobs, long-running jobs
	Investigate failures

	Stages
	Shuffle size, task skew
	Optimize shuffles

	Tasks
	Duration distribution
	Address skew

	Storage
	Cache usage, spill
	Tune memory

	Executors
	GC time, memory usage
	Tune resources

	SQL
	Query plans, metrics
	Optimize queries

15.2 Metrics Collection
Enable metrics
spark.conf.set("spark.metrics.conf.*.sink.console.class",
 "org.apache.spark.metrics.sink.ConsoleSink")

Custom metrics in code
from pyspark import AccumulatorParam

Count records processed
record_count = spark.sparkContext.accumulator(0)

def count_records(row):
 record_count.add(1)
 return row

df.rdd.map(count_records).count()
print(f"Processed {record_count.value} records")
15.3 Performance Baselines
def benchmark_query(df, name):
 """Benchmark a query and collect metrics"""
 import time

 start = time.time()
 df.cache()
 count = df.count() # Materialize
 duration = time.time() - start

 # Get metrics from Spark
 metrics = {
 "name": name,
 "duration_seconds": duration,
 "row_count": count,
 "partitions": df.rdd.getNumPartitions(),
 "rows_per_second": count / duration
 }

 df.unpersist()
 return metrics
16. Common Performance Issues
	Issue
	Symptom
	Root Cause
	Solution

	OOM Error
	Executor lost, task failed
	Insufficient memory
	Increase memory, reduce data per task

	Slow Tasks
	High task duration variance
	Data skew
	Salting, AQE, repartition

	GC Pauses
	Inconsistent performance
	Large heap, poor GC config
	Tune GC, use off-heap

	Shuffle Timeout
	Stage failure
	Network issues, large shuffle
	Increase timeout, compress

	Driver OOM
	collect() failure
	Too much data to driver
	Don't collect, write to storage

	Python UDF Slow
	High task time
	Serialization overhead
	Use native functions, Pandas UDFs

17. Performance Tuning Workflow
┌───┐
│ Performance Tuning Workflow │
└───┘

1. MEASURE
 ├─ Establish baseline performance
 ├─ Identify bottlenecks via Spark UI
 └─ Collect metrics

2. ANALYZE
 ├─ Check for data skew
 ├─ Review query plans
 ├─ Identify shuffle hotspots
 └─ Check resource utilization

3. OPTIMIZE
 ├─ Algorithm changes (highest impact)
 ├─ Data layout improvements
 ├─ Configuration tuning
 └─ Code-level optimizations

4. VALIDATE
 ├─ Compare to baseline
 ├─ Ensure correctness
 └─ Test at scale

5. ITERATE
 └─ Repeat until targets met
18. Quick Reference
Performance Configuration Cheat Sheet
High-performance PySpark configuration
spark = SparkSession.builder \
 .appName("OptimizedApp") \
 \
 # Executor Configuration
 .config("spark.executor.memory", "16g") \
 .config("spark.executor.memoryOverhead", "4g") \
 .config("spark.executor.cores", "4") \
 .config("spark.dynamicAllocation.enabled", "true") \
 .config("spark.dynamicAllocation.minExecutors", "2") \
 .config("spark.dynamicAllocation.maxExecutors", "50") \
 \
 # Memory Configuration
 .config("spark.memory.fraction", "0.6") \
 .config("spark.memory.storageFraction", "0.5") \
 \
 # Serialization
 .config("spark.serializer", "org.apache.spark.serializer.KryoSerializer") \
 .config("spark.sql.execution.arrow.pyspark.enabled", "true") \
 \
 # Shuffle Configuration
 .config("spark.sql.shuffle.partitions", "200") \
 .config("spark.shuffle.compress", "true") \
 .config("spark.shuffle.service.enabled", "true") \
 \
 # AQE Configuration
 .config("spark.sql.adaptive.enabled", "true") \
 .config("spark.sql.adaptive.coalescePartitions.enabled", "true") \
 .config("spark.sql.adaptive.skewJoin.enabled", "true") \
 \
 # Join Configuration
 .config("spark.sql.autoBroadcastJoinThreshold", "50MB") \
 \
 .getOrCreate()
Document Information
	Attribute
	Value

	Document ID
	MTD-SPARK-PERF-001

	Version
	1.0

	Status
	Final

	Classification
	Internal

	Owner
	Data Engineering Practice

	Last Updated
	January 2026

This document is proprietary to Mastech Digital and intended for internal use and client delivery.
image1.png
#MAST=CH
DIGITAL

