[image:]

Technical Guide

PySpark Spark UI and Debugging Guide

Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice

Table of Contents
[Executive Summary](#1-executive-summary)
[Introduction to Spark UI](#2-introduction-to-spark-ui)
2.1 [Accessing Spark UI](#21-accessing-spark-ui)
2.2 [UI Architecture](#22-ui-architecture)
2.3 [History Server](#23-history-server)
[Jobs Tab Deep Dive](#3-jobs-tab-deep-dive)
3.1 [Job Overview](#31-job-overview)
3.2 [Job Timeline](#32-job-timeline)
3.3 [DAG Visualization](#33-dag-visualization)
3.4 [Identifying Failed Jobs](#34-identifying-failed-jobs)
[Stages Tab Analysis](#4-stages-tab-analysis)
4.1 [Stage Metrics](#41-stage-metrics)
4.2 [Task Distribution](#42-task-distribution)
4.3 [Shuffle Statistics](#43-shuffle-statistics)
4.4 [Skew Detection](#44-skew-detection)
[Tasks Tab Investigation](#5-tasks-tab-investigation)
5.1 [Task Metrics](#51-task-metrics)
5.2 [Locality Levels](#52-locality-levels)
5.3 [Speculative Tasks](#53-speculative-tasks)
5.4 [Failed Tasks Analysis](#54-failed-tasks-analysis)
[Storage Tab Monitoring](#6-storage-tab-monitoring)
6.1 [RDD Storage](#61-rdd-storage)
6.2 [Cache Utilization](#62-cache-utilization)
6.3 [Memory vs Disk](#63-memory-vs-disk)
[Environment Tab](#7-environment-tab)
7.1 [Spark Properties](#71-spark-properties)
7.2 [System Properties](#72-system-properties)
7.3 [Classpath Verification](#73-classpath-verification)
[Executors Tab](#8-executors-tab)
8.1 [Executor Metrics](#81-executor-metrics)
8.2 [Memory Analysis](#82-memory-analysis)
8.3 [GC Monitoring](#83-gc-monitoring)
8.4 [Thread Dumps](#84-thread-dumps)
[SQL Tab](#9-sql-tab)
9.1 [Query Plans](#91-query-plans)
9.2 [Physical Plan Analysis](#92-physical-plan-analysis)
9.3 [Metrics Per Operator](#93-metrics-per-operator)
9.4 [Exchange Analysis](#94-exchange-analysis)
[Streaming Tab](#10-streaming-tab)
10.1 [Batch Statistics](#101-batch-statistics)
10.2 [Input Rate Monitoring](#102-input-rate-monitoring)
10.3 [Processing Time Analysis](#103-processing-time-analysis)
[Common Debugging Scenarios](#11-common-debugging-scenarios)
11.1 [Out of Memory Errors](#111-out-of-memory-errors)
11.2 [Slow Jobs](#112-slow-jobs)
11.3 [Data Skew](#113-data-skew)
11.4 [Shuffle Failures](#114-shuffle-failures)
11.5 [Executor Failures](#115-executor-failures)
[Log Analysis](#12-log-analysis)
12.1 [Driver Logs](#121-driver-logs)
12.2 [Executor Logs](#122-executor-logs)
12.3 [Common Error Patterns](#123-common-error-patterns)
12.4 [Log Configuration](#124-log-configuration)
[Programmatic Debugging](#13-programmatic-debugging)
13.1 [Explain Plans](#131-explain-plans)
13.2 [Debug Accumulators](#132-debug-accumulators)
13.3 [Sampling and Profiling](#133-sampling-and-profiling)
[Performance Profiling Tools](#14-performance-profiling-tools)
14.1 [Spark Measure](#141-spark-measure)
14.2 [Event Log Analysis](#142-event-log-analysis)
14.3 [Flame Graphs](#143-flame-graphs)
[Debugging Checklist](#15-debugging-checklist)
[Quick Reference](#16-quick-reference)
1. Executive Summary
The Spark UI is an essential tool for understanding, monitoring, and debugging Apache Spark applications. This guide provides comprehensive coverage of the Spark UI's capabilities and systematic approaches to diagnosing common issues.
Key Debugging Principles:
Start with the Jobs tab: Identify which jobs are slow or failing
Drill into Stages: Find stages with high shuffle, skew, or failures
Analyze Tasks: Identify individual task issues and patterns
Check Executors: Monitor resource utilization and GC behavior
Review SQL Plans: Understand query execution strategies
This document covers every aspect of the Spark UI, common debugging scenarios, and systematic troubleshooting approaches.
2. Introduction to Spark UI
2.1 Accessing Spark UI
Default Ports:
	Component
	Default Port
	URL Pattern

	Driver UI
	4040
	http://driver-host:4040

	Driver UI (additional)
	4041, 4042...
	Auto-increment if 4040 busy

	History Server
	18080
	http://history-server:18080

	Master UI (Standalone)
	8080
	http://master:8080

	Worker UI (Standalone)
	8081
	http://worker:8081

Accessing in Different Environments:
Local mode
UI available at http://localhost:4040

YARN mode
Get tracking URL from YARN ResourceManager
Or use: yarn application -status <app_id>

Kubernetes
kubectl port-forward <driver-pod> 4040:4040

Databricks
Cluster UI -> Spark UI tab
2.2 UI Architecture
┌───┐
│ Spark UI Architecture │
└───┘

┌───┐
│ Spark UI │
├─────────┬─────────┬─────────┬─────────┬─────────┬──────────────┤
│ Jobs │ Stages │ Storage │Environ- │Executors│ SQL │
│ │ │ │ ment │ │ │
├─────────┴─────────┴─────────┴─────────┴─────────┴──────────────┤
│ │
│ ┌───┐ │
│ │ Event Listener │ │
│ │ • SparkListenerJobStart/End │ │
│ │ • SparkListenerStageSubmitted/Completed │ │
│ │ • SparkListenerTaskStart/End │ │
│ │ • SparkListenerExecutorAdded/Removed │ │
│ └───┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ In-Memory Store │ │
│ │ (LiveListenerBus → AppStatusStore) │ │
│ └───┘ │
│ │
└───┘
2.3 History Server
Enabling Event Logging:
spark = SparkSession.builder \
 .config("spark.eventLog.enabled", "true") \
 .config("spark.eventLog.dir", "hdfs:///spark-logs") \
 .config("spark.eventLog.compress", "true") \
 .config("spark.history.fs.logDirectory", "hdfs:///spark-logs") \
 .getOrCreate()
Starting History Server:
Start history server
$SPARK_HOME/sbin/start-history-server.sh

Configuration file: spark-defaults.conf
spark.history.fs.logDirectory=hdfs:///spark-logs
spark.history.ui.port=18080
spark.history.retainedApplications=50
3. Jobs Tab Deep Dive
3.1 Job Overview
Jobs Tab Information:
┌───┐
│ Jobs Tab Layout │
└───┘

┌───┐
│ Event Timeline │
│ ═══ │
│ [Executors Added] [Jobs] [Stages] │
└───┘

┌───┐
│ Completed Jobs (15) │
├───────┬────────────────────┬──────────┬────────┬───────────────┤
│Job ID │ Description │ Duration │ Stages │ Tasks │
├───────┼────────────────────┼──────────┼────────┼───────────────┤
│ 14 │ count at app.py:45 │ 2.5 min │ 3/3 │ 450/450 │
│ 13 │ save at app.py:42 │ 5.1 min │ 2/2 │ 200/200 │
│ ... │ ... │ ... │ ... │ ... │
└───────┴────────────────────┴──────────┴────────┴───────────────┘

Key Columns:
• Job ID: Sequential identifier
• Description: Action that triggered the job (with source location)
• Duration: Total execution time
• Stages: Succeeded/Total stages
• Tasks: Succeeded/Total tasks
What to Look For:
	Indicator
	Normal
	Warning
	Action

	Duration
	Consistent
	10x variance
	Investigate slow jobs

	Stages
	All complete
	Skipped stages
	Check caching

	Tasks
	All succeed
	Failures
	Check executor logs

3.2 Job Timeline
Reading the Timeline:
┌───┐
│ Job Event Timeline │
└───┘

Time: 0s 30s 60s 90s 120s 150s
 │ │ │ │ │ │
Exec: ▓▓▓
Added │─────────┼─────────┼─────────┼─────────┼─────────│

Job 0:├─────────────────────┤
 │ Stage 0 │Stage 1│
 │ (scan) │(agg) │

Job 1: ├───────────────────────────────┤
 │ Stage 2 │ Stage 3 │
 │ (scan) │ (join) │

Legend:
 ▓ = Executor lifetime
 ─ = Stage duration
 │ = Stage boundary (shuffle)
3.3 DAG Visualization
Understanding DAG View:
┌───┐
│ DAG Visualization Example │
└───┘

Job 5 DAG:

 Stage 8 Stage 9
 ┌─────────────────┐ ┌─────────────────┐
 │ WholeStageCodegen│ │ WholeStageCodegen│
 │ ┌─────────────┐ │ │ ┌─────────────┐ │
 │ │ Scan │ │ │ │ Scan │ │
 │ │ Parquet │ │ │ │ Parquet │ │
 │ └──────┬──────┘ │ │ └──────┬──────┘ │
 │ │ │ │ │ │
 │ ┌──────┴──────┐ │ │ ┌──────┴──────┐ │
 │ │ Filter │ │ │ │ Project │ │
 │ └──────┬──────┘ │ │ └──────┬──────┘ │
 │ │ │ │ │ │
 │ ┌──────┴──────┐ │ └────────┼────────┘
 │ │ Project │ │ │
 │ └──────┬──────┘ │ │
 │ │ │ │
 │ ┌──────┴──────┐ │ │
 │ │ Exchange │─┼──────────────────────┘
 │ └─────────────┘ │
 └─────────────────┘
 │
 ▼
 Stage 10
 ┌───┐
 │ WholeStageCodegen │
 │ ┌─────────────────────────────────────┐ │
 │ │ SortMergeJoin │ │
 │ └──────────────┬──────────────────────┘ │
 │ │ │
 │ ┌──────────────┴──────────────────────┐ │
 │ │ HashAggregate │ │
 │ └─────────────────────────────────────┘ │
 └───┘

Key Elements:
• WholeStageCodegen: Fused operators (good)
• Exchange: Shuffle boundary (watch size)
• Blue boxes: Completed stages
• Green boxes: Active stages
• Gray boxes: Pending stages
3.4 Identifying Failed Jobs
Failure Indicators:
┌───┐
│ Failed Jobs (2) │
├───────┬────────────────────┬──────────┬────────┬───────────────┤
│Job ID │ Description │ Duration │ Stages │ Tasks │
├───────┼────────────────────┼──────────┼────────┼───────────────┤
│ 7 │ count at app.py:89 │ 15 min │ 1/3 │ 150/450 (2) │
│ 3 │ save at app.py:52 │ 8 min │ 0/2 │ 0/200 (200) │
└───────┴────────────────────┴──────────┴────────┴───────────────┘

(2) = 2 failed tasks
(200) = 200 failed tasks (stage failed)

Click on Job ID to see:
• Which stage failed
• Task failure reasons
• Error stack traces
4. Stages Tab Analysis
4.1 Stage Metrics
Key Stage Metrics:
┌───┐
│ Stage Details View │
└───┘

Stage 5 (save at script.py:42)
Total Time Across All Tasks: 15.2 min
Locality Level Summary: Process local: 180, Node local: 15, Any: 5

┌───┐
│ Summary Metrics for 200 Completed Tasks │
├─────────────────────┬─────────┬─────────┬─────────┬────────────┤
│ Metric │ Min │ Median │ Max │ Sum │
├─────────────────────┼─────────┼─────────┼─────────┼────────────┤
│ Duration │ 2.1 s │ 4.5 s │ 45 s │ 15 min │
│ GC Time │ 0 ms │ 50 ms │ 2.1 s │ 45 s │
│ Input Size │ 64 MB │ 128 MB │ 256 MB │ 25 GB │
│ Shuffle Write │ 12 MB │ 25 MB │ 150 MB │ 5 GB │
│ Shuffle Read │ 0 B │ 0 B │ 0 B │ 0 B │
│ Spill (Memory) │ 0 B │ 0 B │ 512 MB │ 2 GB │
│ Spill (Disk) │ 0 B │ 0 B │ 256 MB │ 1 GB │
└─────────────────────┴─────────┴─────────┴─────────┴────────────┘

Warning Signs:
• Max Duration >> Median: Data skew
• High GC Time: Memory pressure
• Spill > 0: Insufficient memory
• Max Shuffle Write >> Median: Key skew
4.2 Task Distribution
Task Duration Distribution:
┌───┐
│ Task Duration Distribution │
└───┘

Duration (seconds)
 │
 45 │ ▓
 │ ▓
 30 │ ▓
 │ ▓ ▓
 15 │ ▓▓▓▓▓▓▓▓▓▓▓▓
 │ ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓
 5 │▓▓
 └──►
 0 20 40 60 80 100 120 140 160 180 200
 Task Index

Interpretation:
• Most tasks: 2-5 seconds (good)
• Few stragglers: 30-45 seconds (data skew!)
• Action: Investigate tasks 195-200 for skew
4.3 Shuffle Statistics
Shuffle Read/Write Analysis:
┌───┐
│ Shuffle Statistics │
└───┘

Stage 3 Shuffle Write:
├─ Total Shuffle Write: 15.2 GB
├─ Records Written: 450,000,000
├─ Write Time: 2.5 min (aggregate)
└─ Avg per Task: 76 MB

Stage 4 Shuffle Read:
├─ Total Shuffle Read: 15.2 GB
├─ Records Read: 450,000,000
├─ Fetch Wait Time: 45 s (aggregate)
├─ Remote Reads: 12 GB (80%)
├─ Local Reads: 3 GB (20%)
└─ Avg per Task: 76 MB

Performance Indicators:
┌─────────────────────┬──────────────┬───────────────────────────┐
│ Metric │ Good │ Needs Attention │
├─────────────────────┼──────────────┼───────────────────────────┤
│ Local Read Ratio │ > 50% │ < 20% (poor locality) │
│ Fetch Wait Time │ < 10% stage │ > 30% (network bound) │
│ Spill │ None │ Any (memory pressure) │
│ Records per Task │ < 10M │ > 50M (partition too big) │
└─────────────────────┴──────────────┴───────────────────────────┘
4.4 Skew Detection
Identifying Data Skew:
┌───┐
│ Skew Detection Patterns │
└───┘

Pattern 1: Duration Skew
┌─────────────────────┬─────────┬─────────┬─────────┐
│ Metric │ Min │ Median │ Max │
├─────────────────────┼─────────┼─────────┼─────────┤
│ Duration │ 2 s │ 5 s │ 180 s │ ← Max is 36x median!
└─────────────────────┴─────────┴─────────┴─────────┘

Pattern 2: Input Size Skew
┌─────────────────────┬─────────┬─────────┬─────────┐
│ Metric │ Min │ Median │ Max │
├─────────────────────┼─────────┼─────────┼─────────┤
│ Input Size │ 50 MB │ 100 MB │ 2.5 GB │ ← Max is 25x median!
└─────────────────────┴─────────┴─────────┴─────────┘

Pattern 3: Shuffle Write Skew
┌─────────────────────┬─────────┬─────────┬─────────┐
│ Metric │ Min │ Median │ Max │
├─────────────────────┼─────────┼─────────┼─────────┤
│ Shuffle Write │ 10 MB │ 25 MB │ 800 MB │ ← Max is 32x median!
└─────────────────────┴─────────┴─────────┴─────────┘

Skew Diagnosis:
• Ratio > 5x: Moderate skew, consider optimization
• Ratio > 10x: Severe skew, requires immediate action
• Ratio > 20x: Critical skew, job may fail or timeout
5. Tasks Tab Investigation
5.1 Task Metrics
Detailed Task View:
┌───┐
│ Task Metrics Detail │
└───┘

┌────────┬──────────┬────────┬─────────┬─────────┬───────┬───────┐
│Task ID │ Executor │Duration│ GC Time │ Input │Shuffle│Spill │
│ │ │ │ │ Size │ Write │(Disk) │
├────────┼──────────┼────────┼─────────┼─────────┼───────┼───────┤
│ 0 │ exec-1 │ 4.2 s │ 120 ms │ 128 MB │ 25 MB │ 0 B │
│ 1 │ exec-2 │ 4.5 s │ 95 ms │ 125 MB │ 24 MB │ 0 B │
│ 2 │ exec-1 │ 4.1 s │ 110 ms │ 130 MB │ 26 MB │ 0 B │
│ ... │ ... │ ... │ ... │ ... │ ... │ ... │
│ 198 │ exec-5 │ 35.2 s │ 2.1 s │ 890 MB │150 MB │ 256MB │ ← Skewed!
│ 199 │ exec-3 │ 45.0 s │ 3.2 s │ 1.2 GB │220 MB │ 512MB │ ← Skewed!
└────────┴──────────┴────────┴─────────┴─────────┴───────┴───────┘

Click on Task ID for:
• Task attempt history
• Error messages (if failed)
• Executor thread dump link
• Input/output details
5.2 Locality Levels
Understanding Locality:
┌───┐
│ Data Locality Levels │
└───┘

Best ───► Worst

PROCESS_LOCAL → NODE_LOCAL → NO_PREF → RACK_LOCAL → ANY

┌───────────────┬───┐
│ Level │ Description │
├───────────────┼───┤
│ PROCESS_LOCAL │ Data in same JVM (cached data) │
│ NODE_LOCAL │ Data on same node (HDFS block local) │
│ NO_PREF │ No locality preference │
│ RACK_LOCAL │ Data on same rack (network within rack) │
│ ANY │ Data on different rack (cross-rack network) │
└───────────────┴───┘

Stage Locality Summary:
 Process local: 150 tasks (75%) ← Excellent
 Node local: 30 tasks (15%) ← Good
 Rack local: 15 tasks (7.5%) ← Acceptable
 Any: 5 tasks (2.5%) ← Watch this

If "Any" is high:
• Data not well distributed
• Executors on different racks from data
• Consider rebalancing data placement
5.3 Speculative Tasks
Speculation Analysis:
┌───┐
│ Speculative Execution │
└───┘

Speculative Tasks Launched: 5
Speculative Tasks Succeeded: 3

Task 198:
├─ Original: Started at 10:00:00, Running for 120s
├─ Speculative: Started at 10:01:30, Completed in 45s
└─ Result: Speculative task won, original killed

Task 199:
├─ Original: Started at 10:00:00, Completed in 180s
├─ Speculative: Started at 10:01:45, Running when original finished
└─ Result: Original completed, speculative killed

Interpretation:
• Speculation helping: Speculative tasks finishing faster
• Speculation wasteful: Original tasks always winning
• Consider: Adjust spark.speculation.multiplier
5.4 Failed Tasks Analysis
Task Failure Investigation:
┌───┐
│ Failed Task Analysis │
└───┘

Task 45 - FAILED (Attempt 0)
├─ Executor: exec-3
├─ Duration: 45s before failure
├─ Error: java.lang.OutOfMemoryError: Java heap space
└─ Action: Increase executor memory

Task 45 - FAILED (Attempt 1)
├─ Executor: exec-7
├─ Duration: 52s before failure
├─ Error: java.lang.OutOfMemoryError: Java heap space
└─ Action: Same error, consistent issue

Task 45 - FAILED (Attempt 2)
├─ Executor: exec-2
├─ Duration: 48s before failure
├─ Error: java.lang.OutOfMemoryError: Java heap space
└─ Action: Stage failed after max retries

Root Cause Analysis:
• Same error on different executors = data issue (skew)
• Same error on same executor = executor issue
• Different errors = transient issues
6. Storage Tab Monitoring
6.1 RDD Storage
Storage Tab Overview:
┌───┐
│ Storage Tab View │
└───┘

┌───┐
│ RDD Storage Info │
├────────────────────┬─────────────┬───────────┬─────────┬───────┤
│ RDD Name │Storage Level│ # Partitions│Size in │Size on│
│ │ │ Cached │ Memory │ Disk │
├────────────────────┼─────────────┼───────────┼─────────┼───────┤
│ df_cached │MEMORY_AND_ │ 180/200 │ 4.5 GB │ 500 MB│
│ │DISK │ (90%) │ │ │
├────────────────────┼─────────────┼───────────┼─────────┼───────┤
│ lookup_broadcast │MEMORY_ONLY │ 1/1 │ 50 MB │ 0 B │
│ │ │ (100%) │ │ │
└────────────────────┴─────────────┴───────────┴─────────┴───────┘

Warning Indicators:
• Partitions Cached < 100%: Memory pressure, some evicted
• Size on Disk > 0: Memory full, spilling to disk
• RDD not listed: Cache expired or never materialized
6.2 Cache Utilization
Cache Efficiency Analysis:
┌───┐
│ Cache Utilization Metrics │
└───┘

Executor Storage Summary:
┌──────────┬────────────┬────────────┬────────────┬──────────────┐
│ Executor │ Used Memory│Free Memory │ Used Disk │ Cache Hit % │
├──────────┼────────────┼────────────┼────────────┼──────────────┤
│ exec-1 │ 2.5 GB │ 1.5 GB │ 200 MB │ 85% │
│ exec-2 │ 3.8 GB │ 200 MB │ 1.2 GB │ 72% │
│ exec-3 │ 2.1 GB │ 1.9 GB │ 0 B │ 95% │
│ exec-4 │ 3.9 GB │ 100 MB │ 1.5 GB │ 68% │
└──────────┴────────────┴────────────┴────────────┴──────────────┘

Observations:
• exec-2, exec-4: Memory pressure, spilling to disk
• exec-3: Healthy cache utilization
• Action: Rebalance cache or increase memory
6.3 Memory vs Disk
Storage Level Impact:
┌───┐
│ Memory vs Disk Trade-offs │
└───┘

Performance Comparison (same dataset):

MEMORY_ONLY:
├─ Read time: 0.5 seconds
├─ Storage: 4 GB memory
└─ Risk: May be evicted

MEMORY_AND_DISK:
├─ Memory read: 0.5 seconds
├─ Disk read: 5 seconds (10x slower)
├─ Storage: 4 GB memory + overflow to disk
└─ Risk: Slower if memory pressure

MEMORY_ONLY_SER:
├─ Read time: 1.5 seconds (deserialization)
├─ Storage: 1.5 GB memory (compressed)
└─ Risk: CPU overhead

DISK_ONLY:
├─ Read time: 5 seconds
├─ Storage: 1 GB disk (compressed)
└─ Risk: I/O bound
7. Environment Tab
7.1 Spark Properties
Key Configuration Review:
┌───┐
│ Spark Properties │
└───┘

Critical Properties to Verify:
┌──────────────────────────────────────┬──────────────────────────┐
│ Property │ Value │
├──────────────────────────────────────┼──────────────────────────┤
│ spark.executor.memory │ 16g │
│ spark.executor.cores │ 4 │
│ spark.executor.instances │ 10 │
│ spark.sql.shuffle.partitions │ 200 │
│ spark.sql.adaptive.enabled │ true │
│ spark.serializer │ KryoSerializer │
│ spark.sql.autoBroadcastJoinThreshold │ 10485760 │
│ spark.memory.fraction │ 0.6 │
│ spark.memory.storageFraction │ 0.5 │
└──────────────────────────────────────┴──────────────────────────┘

Check for:
• Expected values match actual
• No conflicting configurations
• Resource limits appropriate for workload
7.2 System Properties
JVM and System Configuration:
┌───┐
│ System Properties │
└───┘

JVM Properties:
├─ java.version: 11.0.2
├─ java.vm.name: OpenJDK 64-Bit Server VM
├─ java.home: /usr/lib/jvm/java-11-openjdk

OS Properties:
├─ os.name: Linux
├─ os.arch: amd64
├─ os.version: 5.4.0-generic

User Properties:
├─ user.name: spark
├─ user.dir: /opt/spark/work

Important for Debugging:
• Java version compatibility
• Library path issues
• Environment variable settings
7.3 Classpath Verification
Classpath Issues Detection:
┌───┐
│ Classpath Analysis │
└───┘

Added JARs:
├─ /user/spark/jars/my-udf.jar
├─ /user/spark/jars/connector.jar
└─ /user/spark/jars/utilities.jar

Added Files:
├─ /user/spark/config/app.conf
└─ /user/spark/data/lookup.csv

Common Issues:
• Missing JAR: ClassNotFoundException
• Version conflict: NoSuchMethodError
• Wrong path: FileNotFoundException

Verification Steps:
1. Check all expected JARs are listed
2. Verify no duplicate JARs with different versions
3. Confirm paths are accessible from all executors
8. Executors Tab
8.1 Executor Metrics
Executor Overview:
┌───┐
│ Executors Summary │
└───┘

Active Executors: 10 | Dead Executors: 2 | Total: 12

┌────────┬────────┬───────┬────────┬────────┬────────┬──────────┐
│Executor│ Status │ Cores │Storage │ Disk │ Tasks │ Failed │
│ ID │ │ Used │ Memory │ Used │Complete│ Tasks │
├────────┼────────┼───────┼────────┼────────┼────────┼──────────┤
│driver │Active │ 0/4 │ 512 MB │ 0 B │ N/A │ N/A │
│exec-1 │Active │ 4/4 │ 2.5 GB │ 200 MB │ 450 │ 0 │
│exec-2 │Active │ 4/4 │ 3.2 GB │ 1.1 GB │ 425 │ 2 │
│exec-3 │Active │ 3/4 │ 2.1 GB │ 0 B │ 480 │ 0 │
│exec-4 │Dead │ - │ - │ - │ 125 │ 15 │ ← Investigate!
│exec-5 │Active │ 4/4 │ 2.8 GB │ 500 MB │ 390 │ 1 │
└────────┴────────┴───────┴────────┴────────┴────────┴──────────┘

Click executor ID for detailed metrics:
• Task time breakdown
• GC statistics
• Shuffle read/write
• Thread dump access
8.2 Memory Analysis
Executor Memory Breakdown:
┌───┐
│ Executor Memory Analysis │
└───┘

Executor exec-2 Memory:
┌───┐
│ 16 GB Total Heap │
├───┤
│ Reserved (300 MB) │
├───┤
│ User Memory: 6.28 GB │
│ ├─ Used: 1.2 GB (19%) │
│ └─ Free: 5.08 GB │
├───┤
│ Spark Memory: 9.42 GB │
│ ├─ Storage Used: 3.2 GB (34%) │
│ ├─ Execution Used: 4.8 GB (51%) │
│ └─ Free: 1.42 GB (15%) ← Low! │
└───┘

Warning: Low free Spark memory may cause:
• Cache eviction
• Shuffle spill to disk
• Potential OOM during aggregations
8.3 GC Monitoring
GC Statistics:
┌───┐
│ GC Time Analysis │
└───┘

┌──────────┬───────────┬───────────┬───────────┬─────────────────┐
│ Executor │ Task Time │ GC Time │ GC Ratio │ Status │
├──────────┼───────────┼───────────┼───────────┼─────────────────┤
│ exec-1 │ 45 min │ 2.5 min │ 5.5% │ Healthy │
│ exec-2 │ 42 min │ 8.2 min │ 19.5% │ Warning ⚠️ │
│ exec-3 │ 48 min │ 1.8 min │ 3.8% │ Healthy │
│ exec-4 │ 35 min │ 12.1 min │ 34.6% │ Critical ❌ │
└──────────┴───────────┴───────────┴───────────┴─────────────────┘

GC Ratio Thresholds:
• < 5%: Healthy
• 5-10%: Acceptable
• 10-20%: Warning - consider tuning
• > 20%: Critical - memory/GC issues

Actions for High GC:
1. Increase executor memory
2. Reduce data per task (more partitions)
3. Tune GC settings
4. Use off-heap memory
8.4 Thread Dumps
Accessing Thread Dumps:
┌───┐
│ Thread Dump Analysis │
└───┘

Click "Thread Dump" link in Executors tab for live executor state.

Common Thread States:

RUNNABLE (Good):
"Executor task launch worker for task 45" #67 daemon prio=5
 java.lang.Thread.State: RUNNABLE
 at org.apache.spark.sql.execution.aggregate.HashAggregateExec...

BLOCKED (Problem):
"Executor task launch worker for task 46" #68 daemon prio=5
 java.lang.Thread.State: BLOCKED (on object monitor)
 at java.util.Hashtable.get(Hashtable.java:443)
 - waiting to lock <0x00000007c0a8e9f8> (a java.util.Properties)

WAITING (Usually OK):
"Executor task launch worker for task 47" #69 daemon prio=5
 java.lang.Thread.State: WAITING (parking)
 at sun.misc.Unsafe.park(Native Method)
 - waiting on condition

Use Thread Dumps When:
• Tasks stuck for long time
• Suspected deadlock
• Understanding what executor is doing
9. SQL Tab
9.1 Query Plans
SQL Tab Overview:
┌───┐
│ SQL Tab Queries │
└───┘

┌────────┬──────────────────────────────┬──────────┬──────────────┐
│Query ID│ Description │ Duration │ Status │
├────────┼──────────────────────────────┼──────────┼──────────────┤
│ 5 │ SELECT category, SUM(amount) │ 2.5 min │ Completed │
│ │ FROM sales GROUP BY... │ │ │
├────────┼──────────────────────────────┼──────────┼──────────────┤
│ 4 │ df.join(lookup, "key") │ 5.2 min │ Completed │
├────────┼──────────────────────────────┼──────────┼──────────────┤
│ 3 │ df.filter(col > 100)... │ 45 sec │ Completed │
└────────┴──────────────────────────────┴──────────┴──────────────┘

Click Query ID for:
• Visual DAG representation
• Physical plan
• Per-operator metrics
9.2 Physical Plan Analysis
Understanding Physical Plans:
┌───┐
│ Physical Plan View │
└───┘

Query 5 Physical Plan:

== Physical Plan ==
AdaptiveSparkPlan isFinalPlan=true
+- == Final Plan ==
 *(3) HashAggregate(keys=[category#25], functions=[sum(amount#30)])
 +- AQEShuffleRead coalesced
 +- ShuffleQueryStage 1
 +- Exchange hashpartitioning(category#25, 200)
 +- *(2) HashAggregate(keys=[category#25], functions=[partial_sum(amount#30)])
 +- *(2) Project [category#25, amount#30]
 +- *(2) Filter (status#28 = active)
 +- *(2) ColumnarToRow
 +- FileScan parquet [category#25,status#28,amount#30]
 PushedFilters: [EqualTo(status,active)]

Key Elements:
• *(N): WholeStageCodegen stage N (good - fused operators)
• Exchange: Shuffle operation (watch size)
• FileScan: Data source with pushed filters
• AQEShuffleRead: Adaptive coalescing (good)
9.3 Metrics Per Operator
Operator-Level Metrics:
┌───┐
│ Operator Metrics │
└───┘

Visual Plan with Metrics:

┌─────────────────────────────────────┐
│ HashAggregate │
│ ├─ Rows output: 1,250 │
│ ├─ Time: 15.2 s │
│ └─ Peak memory: 256 MB │
└────────────────┬────────────────────┘
 │
┌────────────────┴────────────────────┐
│ Exchange (hashpartitioning) │
│ ├─ Rows output: 45,000,000 │
│ ├─ Data size: 2.5 GB │ ← Watch this!
│ └─ Time: 45.3 s │
└────────────────┬────────────────────┘
 │
┌────────────────┴────────────────────┐
│ HashAggregate (partial) │
│ ├─ Rows output: 45,000,000 │
│ ├─ Rows input: 500,000,000 │
│ └─ Time: 120.5 s │
└────────────────┬────────────────────┘
 │
┌────────────────┴────────────────────┐
│ Filter │
│ ├─ Rows output: 500,000,000 │
│ ├─ Rows input: 1,200,000,000 │
│ └─ Time: 35.2 s │
└────────────────┬────────────────────┘
 │
┌────────────────┴────────────────────┐
│ FileScan parquet │
│ ├─ Rows output: 1,200,000,000 │
│ ├─ Files read: 500 │
│ ├─ Data read: 150 GB │
│ └─ Partition filters: [year=2024] │
└─────────────────────────────────────┘
9.4 Exchange Analysis
Shuffle Exchange Details:
┌───┐
│ Exchange (Shuffle) Analysis │
└───┘

Exchange Operator Details:
├─ Type: hashpartitioning(customer_id, 200)
├─ Total Data: 15.2 GB
├─ Total Records: 450,000,000
├─ Average per Partition: 76 MB
├─ Min Partition: 12 MB
├─ Max Partition: 850 MB ← Skew detected!
└─ Coefficient of Variation: 2.3 (>1.0 indicates skew)

Shuffle Write Breakdown:
├─ Serialization Time: 25%
├─ Sort Time: 35%
├─ Disk Write Time: 40%
└─ Compression: lz4 (effective ratio: 0.65)

Recommendations:
• High max partition → Consider salting or AQE
• High serialization time → Enable Kryo
• Imbalanced partitions → Repartition before shuffle
10. Streaming Tab
10.1 Batch Statistics
Streaming Metrics:
┌───┐
│ Streaming Statistics │
└───┘

Query: kafka_to_delta
Status: ACTIVE
├─ Batches Completed: 1,250
├─ Records Processed: 125,000,000
├─ Last Batch Time: 2024-01-15 10:30:45
└─ Current State: Processing Batch 1251

┌──────────┬───────────┬───────────┬───────────┬───────────────┐
│ Batch ID │ Records │ Input Rate│ Proc Time │ Status │
├──────────┼───────────┼───────────┼───────────┼───────────────┤
│ 1250 │ 100,000 │ 10K/sec │ 8.5 sec │ Completed │
│ 1249 │ 95,000 │ 9.5K/sec │ 9.2 sec │ Completed │
│ 1248 │ 120,000 │ 12K/sec │ 11.0 sec │ Completed ⚠️ │
│ 1247 │ 98,000 │ 9.8K/sec │ 8.8 sec │ Completed │
└──────────┴───────────┴───────────┴───────────┴───────────────┘

Warning: Batch 1248 processing time (11s) > trigger interval (10s)
10.2 Input Rate Monitoring
┌───┐
│ Input Rate Graph │
└───┘

Records/sec
 │
15K │ ╱╲
 │ ╱ ╲
12K │ ╱ ╲ ╱╲
 │ ╱╲ ╱ ╲ ╱ ╲
 9K │ ╱ ╲╱ ╲ ╱ ╲ ╱
 │ ╱ ╲ ╱ ╲ ╱
 6K │ ╱ ╲ ╱ ╲╱
 │ ╱
 3K │╱
 └──►
 10:00 10:05 10:10 10:15 10:20 10:25 10:30 Time

Processing Rate vs Input Rate:
• Input Rate > Processing Rate = Backlog building ❌
• Input Rate ≈ Processing Rate = Stable ✓
• Input Rate < Processing Rate = Catching up ✓
10.3 Processing Time Analysis
┌───┐
│ Processing Time Breakdown │
└───┘

Average Batch Processing Time: 8.5 seconds

Breakdown:
├─ Trigger Latency: 0.1 sec (1%)
├─ Input Processing: 1.2 sec (14%)
├─ State Operations: 2.5 sec (29%) ← Watch this
├─ Computation: 3.8 sec (45%)
├─ Sink Write: 0.9 sec (11%)
└─ Commit: 0.0 sec (0%)

State Store Metrics:
├─ State Size: 2.5 GB
├─ State Rows: 10,000,000
├─ Update Rate: 50K rows/batch
└─ Maintenance Time: 0.8 sec/batch

If State Operations high:
• Consider state TTL
• Optimize state key cardinality
• Use RocksDB state store for large state
11. Common Debugging Scenarios
11.1 Out of Memory Errors
OOM Diagnosis Workflow:
┌───┐
│ OOM Debugging Workflow │
└───┘

Error: java.lang.OutOfMemoryError: Java heap space

Step 1: Identify Location
├─ Driver OOM → Check driver logs, reduce collect()
├─ Executor OOM → Check executor in Spark UI
└─ YARN Container OOM → Check memoryOverhead

Step 2: Check Spark UI
├─ Executors Tab → Memory usage per executor
├─ Stages Tab → Spill metrics (Memory and Disk)
└─ Storage Tab → Cache size

Step 3: Analyze Task
┌──┐
│ Task causing OOM: │
│ ├─ Input size: 2.5 GB (too large for single task!) │
│ ├─ Shuffle read: 1.8 GB │
│ └─ Peak execution memory: 14.5 GB (near limit) │
└──┘

Step 4: Solutions
├─ Increase spark.executor.memory
├─ Increase spark.sql.shuffle.partitions
├─ Reduce spark.executor.cores (less concurrent tasks)
├─ Enable spark.memory.offHeap
└─ Fix data skew if present
11.2 Slow Jobs
Slow Job Investigation:
┌───┐
│ Slow Job Investigation │
└───┘

Job Duration: 45 minutes (expected: 10 minutes)

Step 1: Identify Slow Stage
┌────────┬──────────────────────┬──────────┬─────────────────────┐
│Stage ID│ Description │ Duration │ Issue │
├────────┼──────────────────────┼──────────┼─────────────────────┤
│ 0 │ Scan parquet │ 2 min │ Normal │
│ 1 │ Exchange │ 3 min │ Normal │
│ 2 │ SortMergeJoin │ 38 min │ ← Problem here! │
│ 3 │ HashAggregate │ 2 min │ Normal │
└────────┴──────────────────────┴──────────┴─────────────────────┘

Step 2: Analyze Slow Stage
├─ Task Duration: Min=30s, Median=2min, Max=35min
├─ Diagnosis: Severe data skew (Max is 17x median)
└─ Solution: Enable AQE skew join or apply salting

Step 3: Verify
├─ Check task-level metrics
├─ Identify skewed keys
└─ Review query plan for optimization opportunities
11.3 Data Skew
Skew Detection and Resolution:
┌───┐
│ Data Skew Resolution │
└───┘

Detection in Spark UI:

Stage 5 Summary Metrics:
┌─────────────────────┬─────────┬─────────┬─────────┐
│ Metric │ Min │ Median │ Max │
├─────────────────────┼─────────┼─────────┼─────────┤
│ Duration │ 15 sec │ 45 sec │ 25 min │ ← 33x skew!
│ Shuffle Read │ 50 MB │ 150 MB │ 8 GB │ ← 53x skew!
│ Records │ 100K │ 500K │ 50M │ ← 100x skew!
└─────────────────────┴─────────┴─────────┴─────────┘

Identifying Skewed Keys:

Add to your code to find skewed keys
df.groupBy("join_key").count() \
 .orderBy(desc("count")) \
 .show(20)

Result:
┌──────────┬───────────┐
│ join_key │ count │
├──────────┼───────────┤
│ NULL │ 45,000,000│ ← Null handling issue
│ "default"│ 12,000,000│ ← Default value skew
│ "other" │ 8,000,000│ ← Catch-all category
└──────────┴───────────┘

Solutions:
1. Enable AQE: spark.sql.adaptive.skewJoin.enabled=true
2. Filter out problematic keys before join
3. Apply salting technique
4. Separate processing for skewed keys
11.4 Shuffle Failures
Shuffle Failure Debugging:
┌───┐
│ Shuffle Failure Analysis │
└───┘

Error: FetchFailedException: Failed to connect to executor

Common Causes:
1. Executor died before shuffle data consumed
2. Network timeout during fetch
3. Disk full on executor
4. Too many concurrent fetch requests

Diagnosis Steps:

Step 1: Check Executor Status
└─ Executors Tab: Is source executor still alive?

Step 2: Check Executor Logs
└─ Look for: OOM, disk space, network errors

Step 3: Check Shuffle Metrics
├─ Shuffle Write Size: How much data?
├─ Shuffle Read Fetch Wait: Network delays?
└─ Remote/Local ratio: Data locality issues?

Solutions:
├─ Enable external shuffle service
├─ Increase spark.shuffle.io.maxRetries
├─ Increase spark.shuffle.io.retryWait
├─ Reduce concurrent fetches: spark.reducer.maxReqsInFlight
└─ Enable shuffle compression
11.5 Executor Failures
Executor Failure Investigation:
┌───┐
│ Executor Failure Analysis │
└───┘

Executors Tab shows: exec-4 (Dead)

Step 1: Click on Dead Executor
├─ Last Heartbeat: 10:15:32
├─ Removal Reason: Container killed by YARN
└─ Tasks Running at Death: 4

Step 2: Check YARN Container Logs
$ yarn logs -applicationId application_xxx -containerId container_xxx

Common Failure Reasons:

1. Container Memory Exceeded:
 "Container killed by YARN for exceeding memory limits"
 Solution: Increase spark.executor.memoryOverhead

2. Heartbeat Timeout:
 "Executor heartbeat timed out"
 Solution: Check network, increase spark.network.timeout

3. JVM Crash:
 "Process exited with code 137" (OOM Kill)
 Solution: Increase memory, reduce workload

4. Python Worker Crash (PySpark):
 "Python worker exited unexpectedly"
 Solution: Check UDF code, increase memoryOverhead
12. Log Analysis
12.1 Driver Logs
Key Driver Log Patterns:
Job submission
INFO SparkContext: Starting job: count at script.py:45

Stage completion
INFO DAGScheduler: Stage 0 (scan) finished in 12.5 s

Task failures
WARN TaskSetManager: Lost task 45.0 in stage 2.0:
 java.lang.OutOfMemoryError: Java heap space

Shuffle issues
ERROR BlockManagerMaster: Failed to get block shuffle_0_0_0

Job completion
INFO SparkContext: Job 0 finished: count at script.py:45, took 45.2 s
12.2 Executor Logs
Accessing Executor Logs:
YARN
yarn logs -applicationId <app_id> -containerId <container_id>

Standalone
Check work directory: $SPARK_HOME/work/<app_id>/<executor_id>/

Kubernetes
kubectl logs <executor_pod>
Key Executor Log Patterns:
Task start
INFO Executor: Running task 0.0 in stage 0.0

GC activity
INFO GC: [GC (Allocation Failure) 1234567K->234567K(2048000K), 0.125 secs]

Shuffle write
INFO ShuffleBlockFetcherIterator: Started 50 remote fetches

Memory issues
WARN MemoryStore: Not enough space to cache rdd_5_0 in memory

Task completion
INFO Executor: Finished task 0.0 in stage 0.0, took 2.5 s
12.3 Common Error Patterns
Error Pattern Reference:
	Error Pattern
	Likely Cause
	Solution

	`OutOfMemoryError: Java heap`
	Executor OOM
	Increase memory

	`OutOfMemoryError: GC overhead`
	Too much GC
	Increase memory, tune GC

	`Container killed by YARN`
	Memory overhead
	Increase memoryOverhead

	`FetchFailedException`
	Shuffle failure
	Enable external shuffle

	`FileNotFoundException`
	Missing file
	Check paths, permissions

	`ClassNotFoundException`
	Missing JAR
	Add JAR to spark.jars

	`SparkException: Task failed`
	Task error
	Check task logs

12.4 Log Configuration
Enabling Detailed Logging:
Set log level programmatically
spark.sparkContext.setLogLevel("DEBUG")

Or via configuration
spark.conf.set("spark.log.level", "DEBUG")

For specific components
In log4j2.properties:
logger.spark.name = org.apache.spark
logger.spark.level = DEBUG

logger.scheduler.name = org.apache.spark.scheduler
logger.scheduler.level = DEBUG
13. Programmatic Debugging
13.1 Explain Plans
Using Explain:
Basic explain
df.explain()

Extended explain (all plans)
df.explain(mode="extended")

Formatted explain (Spark 3.0+)
df.explain(mode="formatted")

Cost explain
df.explain(mode="cost")

Codegen explain
df.explain(mode="codegen")

Example output analysis
"""
== Physical Plan ==
*(2) HashAggregate(keys=[category#10], functions=[sum(amount#15)])
+- Exchange hashpartitioning(category#10, 200), ENSURE_REQUIREMENTS
 +- *(1) HashAggregate(keys=[category#10], functions=[partial_sum(amount#15)])
 +- *(1) Filter (amount#15 > 100)
 +- *(1) ColumnarToRow
 +- FileScan parquet [category#10,amount#15]
 PushedFilters: [GreaterThan(amount,100)]

Key observations:
- *(N) = WholeStageCodegen (good)
- PushedFilters = Predicate pushdown (good)
- Exchange = Shuffle (watch size)
"""
13.2 Debug Accumulators
Using Accumulators for Debugging:
Create debug accumulators
null_count = spark.sparkContext.accumulator(0)
error_count = spark.sparkContext.accumulator(0)
processed_count = spark.sparkContext.accumulator(0)

def process_with_debug(row):
 global null_count, error_count, processed_count

 processed_count.add(1)

 if row.key is None:
 null_count.add(1)
 return None

 try:
 result = transform(row)
 return result
 except Exception:
 error_count.add(1)
 return None

Process data
result_df = df.rdd.map(process_with_debug).filter(lambda x: x is not None)
result_df.count() # Trigger execution

Check debug info
print(f"Total processed: {processed_count.value}")
print(f"Null keys: {null_count.value}")
print(f"Errors: {error_count.value}")
13.3 Sampling and Profiling
Debug with Sampling:
Sample data for local debugging
sample_df = df.sample(fraction=0.001).limit(1000)
sample_pdf = sample_df.toPandas()

Profile sample
sample_pdf.describe()
sample_pdf['column'].value_counts()

Test transformations locally
def my_transform(pdf):
 # Test on Pandas first
 return pdf.apply(...)

Verify on sample before full run
result_sample = my_transform(sample_pdf)
14. Performance Profiling Tools
14.1 Spark Measure
Using Spark Measure:
Install: pip install sparkmeasure

from sparkmeasure import StageMetrics

stagemetrics = StageMetrics(spark)

Capture metrics
stagemetrics.begin()
df.count()
stagemetrics.end()

Print report
stagemetrics.print_report()

Output:
"""
Scheduling mode = FIFO
Spark Context default parallelism = 8

Aggregated Spark stage metrics:
numStages => 2
numTasks => 200
elapsedTime => 45234 (45 s)
stageDuration => 44521 (45 s)
executorRunTime => 320456 (5.3 min)
executorCpuTime => 285234 (4.8 min)
executorDeserializeTime => 1234 (1 s)
executorDeserializeCpuTime => 987 (1 s)
resultSerializationTime => 234 (0.2 s)
jvmGCTime => 12345 (12 s)
shuffleFetchWaitTime => 5678 (6 s)
shuffleWriteTime => 8901 (9 s)
resultSize => 12345678 (12 MB)
"""
14.2 Event Log Analysis
Analyzing Event Logs:
Read event log
event_log = spark.read.json("hdfs:///spark-logs/app-xxx")

Analyze job durations
jobs = event_log.filter(col("Event") == "SparkListenerJobEnd")
jobs.select("Job ID", "Completion Time", "Job Result").show()

Find slow stages
stages = event_log.filter(col("Event") == "SparkListenerStageCompleted")
stages.select(
 "Stage Info.Stage ID",
 "Stage Info.Stage Name",
 "Stage Info.Submission Time",
 "Stage Info.Completion Time"
).show()
14.3 Flame Graphs
Generating Flame Graphs:
Enable profiling
--conf spark.executor.extraJavaOptions="-XX:+UnlockDiagnosticVMOptions -XX:+DebugNonSafepoints"

Use async-profiler
Download: https://github.com/jvm-profiling-tools/async-profiler

Attach to executor JVM
./profiler.sh -d 60 -f flamegraph.svg <executor_pid>

View in browser
flamegraph.svg shows hot methods
15. Debugging Checklist
Pre-Run Checklist
[] Verify cluster resources match requirements
[] Check data source accessibility
[] Confirm all JARs/dependencies available
[] Review Spark configuration
During-Run Checklist
[] Monitor Spark UI Jobs tab
[] Watch for failed/slow stages
[] Check executor memory and GC
[] Monitor shuffle sizes
Post-Failure Checklist
[] Identify failed stage/task
[] Check error message in Spark UI
[] Review executor logs
[] Analyze task metrics for skew
[] Check resource utilization
16. Quick Reference
Spark UI URLs
	Component
	Default URL

	Driver UI
	http://driver:4040

	History Server
	http://server:18080

	YARN RM
	http://rm:8088

Key Metrics Thresholds
	Metric
	Good
	Warning
	Critical

	GC Ratio
	<5%
	5-15%
	>15%

	Task Skew
	<2x
	2-5x
	>5x

	Spill
	0
	Any
	Large

	Shuffle/Input
	<1.0
	1-2
	>2

Common Error Solutions
	Error
	Quick Fix

	OOM
	Increase memory, more partitions

	Skew
	Enable AQE, salting

	Shuffle Fail
	External shuffle, retries

	Slow
	Check skew, add resources

Document Information
	Attribute
	Value

	Document ID
	MTD-SPARK-DEBUG-001

	Version
	1.0

	Status
	Final

	Classification
	Internal

	Owner
	Data Engineering Practice

	Last Updated
	January 2026

This document is proprietary to Mastech Digital and intended for internal use and client delivery.
image1.png
#MAST=CH
DIGITAL

