Migration Testing Strategy
Document Information
Version: 1.0
Last Updated: 2025-01-24
Classification: Internal Use
Owner: Quality Assurance Team
__
1. Executive Summary
This document outlines a comprehensive testing strategy for validating data platform migrations to Databricks. It covers test types, methodologies, tools, and acceptance criteria to ensure migration quality and data integrity.
__
2. Testing Framework Overview
2.1 Testing Pyramid
┌───┐
│ MIGRATION TESTING PYRAMID │
├───┤
│ │
│ ┌───────────┐ │
│ │ E2E │ ◀── End-to-End Pipeline Tests │
│ │ Tests │ (Full data flow) │
│ └─────┬─────┘ │
│ ┌──────┴──────┐ │
│ │ Integration │ ◀── Component Integration │
│ │ Tests │ (Multi-table, joins) │
│ └──────┬──────┘ │
│ ┌───────────┴───────────┐ │
│ │ Data Reconciliation │ ◀── Source vs Target │
│ │ Tests │ (Row/value compare) │
│ └───────────┬───────────┘ │
│ ┌──────────────────┴──────────────────┐ │
│ │ Unit Tests │ ◀── Transformation │
│ │ (Individual transformations) │ Logic Tests │
│ └─────────────────────────────────────┘ │
│ │
│ Volume: Few ◀──▶ Many │
│ Speed: Slow ◀──▶ Fast │
│ Cost: High ◀──▶ Low │
│ │
└───┘

2.2 Test Categories
	Category
	Purpose
	Frequency
	Owner

	Unit Tests
	Validate individual transformations
	Every commit
	Developers

	Integration Tests
	Validate component interactions
	Daily builds
	QA Team

	Data Reconciliation
	Compare source vs target data
	Per migration
	QA Team

	Performance Tests
	Validate SLAs are met
	Weekly
	Platform Team

	UAT Tests
	Business validation
	Pre-release
	Business Users

	Regression Tests
	Prevent breaking changes
	Every release
	QA Team

__
3. Unit Testing
3.1 Unit Test Framework
tests/unit/test_transformations.py
import pytest
from pyspark.sql import SparkSession
from pyspark.sql import functions as F
from pyspark.sql.types import *
from decimal import Decimal
from datetime import date

Assuming transformations are in src/transformations.py
from src.transformations import (
 clean_customer_data,
 calculate_order_metrics,
 apply_business_rules
)

@pytest.fixture(scope="session")
def spark():
 """Create SparkSession for testing."""
 return (SparkSession.builder
 .master("local[2]")
 .appName("unit-tests")
 .config("spark.sql.shuffle.partitions", "2")
 .config("spark.default.parallelism", "2")
 .getOrCreate())

@pytest.fixture
def sample_customers(spark):
 """Create sample customer DataFrame."""
 data = [
 ("C001", "John Doe", "john@email.com", "ACTIVE", 100.0),
 ("C002", "Jane Smith", "JANE@EMAIL.COM", "ACTIVE", 200.0),
 ("C003", None, "test@email.com", "INACTIVE", 50.0),
 ("C004", "Bob Wilson", None, "ACTIVE", 150.0),
]
 schema = StructType([
 StructField("customer_id", StringType(), False),
 StructField("name", StringType(), True),
 StructField("email", StringType(), True),
 StructField("status", StringType(), False),
 StructField("balance", DoubleType(), True)
])
 return spark.createDataFrame(data, schema)

class TestCleanCustomerData:
 """Tests for customer data cleaning transformation."""

 def test_standardizes_email_to_lowercase(self, spark, sample_customers):
 """Email addresses should be lowercase."""
 result = clean_customer_data(sample_customers)
 emails = [row.email for row in result.select("email").collect() if row.email]
 assert all(email == email.lower() for email in emails)

 def test_handles_null_names(self, spark, sample_customers):
 """Null names should be replaced with 'Unknown'."""
 result = clean_customer_data(sample_customers)
 null_names = result.filter(F.col("name").isNull()).count()
 assert null_names == 0

 unknown_names = result.filter(F.col("name") == "Unknown").count()
 assert unknown_names == 1

 def test_filters_inactive_customers(self, spark, sample_customers):
 """Inactive customers should be filtered out."""
 result = clean_customer_data(sample_customers)
 inactive = result.filter(F.col("status") == "INACTIVE").count()
 assert inactive == 0

 def test_preserves_row_count_for_active(self, spark, sample_customers):
 """Should preserve active customer count."""
 active_input = sample_customers.filter(F.col("status") == "ACTIVE").count()
 result = clean_customer_data(sample_customers)
 assert result.count() == active_input

 def test_output_schema(self, spark, sample_customers):
 """Output should have expected columns."""
 result = clean_customer_data(sample_customers)
 expected_columns = {"customer_id", "name", "email", "status", "balance", "processed_at"}
 assert set(result.columns) == expected_columns

 def test_empty_input(self, spark):
 """Should handle empty DataFrame gracefully."""
 schema = StructType([
 StructField("customer_id", StringType(), False),
 StructField("name", StringType(), True),
 StructField("email", StringType(), True),
 StructField("status", StringType(), False),
 StructField("balance", DoubleType(), True)
])
 empty_df = spark.createDataFrame([], schema)
 result = clean_customer_data(empty_df)
 assert result.count() == 0

class TestCalculateOrderMetrics:
 """Tests for order metrics calculation."""

 @pytest.fixture
 def sample_orders(self, spark):
 """Create sample orders DataFrame."""
 data = [
 ("O001", "C001", date(2025, 1, 15), Decimal("100.00"), 2),
 ("O002", "C001", date(2025, 1, 20), Decimal("200.00"), 3),
 ("O003", "C002", date(2025, 1, 18), Decimal("150.00"), 1),
]
 schema = StructType([
 StructField("order_id", StringType(), False),
 StructField("customer_id", StringType(), False),
 StructField("order_date", DateType(), False),
 StructField("amount", DecimalType(18, 2), False),
 StructField("quantity", IntegerType(), False)
])
 return spark.createDataFrame(data, schema)

 def test_calculates_total_by_customer(self, spark, sample_orders):
 """Should calculate correct totals per customer."""
 result = calculate_order_metrics(sample_orders)

 c001_total = result.filter(F.col("customer_id") == "C001").select("total_amount").collect()[0][0]
 assert c001_total == Decimal("300.00")

 def test_calculates_order_count(self, spark, sample_orders):
 """Should count orders per customer."""
 result = calculate_order_metrics(sample_orders)

 c001_count = result.filter(F.col("customer_id") == "C001").select("order_count").collect()[0][0]
 assert c001_count == 2

 def test_calculates_average(self, spark, sample_orders):
 """Should calculate correct average."""
 result = calculate_order_metrics(sample_orders)

 c001_avg = result.filter(F.col("customer_id") == "C001").select("avg_amount").collect()[0][0]
 assert abs(float(c001_avg) - 150.0) < 0.01

3.2 Running Unit Tests
Run all unit tests
pytest tests/unit/ -v

Run with coverage
pytest tests/unit/ -v --cov=src --cov-report=html

Run specific test class
pytest tests/unit/test_transformations.py::TestCleanCustomerData -v

Run in parallel
pytest tests/unit/ -v -n auto

__
4. Data Reconciliation Testing
4.1 Reconciliation Framework
tests/reconciliation/reconciliation_framework.py
from dataclasses import dataclass
from typing import List, Dict, Optional
from pyspark.sql import DataFrame
from pyspark.sql import functions as F
from datetime import datetime

@dataclass
class ReconciliationResult:
 """Results of data reconciliation."""
 test_name: str
 source_system: str
 target_system: str
 timestamp: datetime
 passed: bool
 source_count: int
 target_count: int
 matched_count: int
 source_only_count: int
 target_only_count: int
 value_mismatch_count: int
 details: Dict

class DataReconciliator:
 """Framework for comparing source and target data."""

 def __init__(self, spark):
 self.spark = spark
 self.results = []

 def compare_counts(
 self,
 source_df: DataFrame,
 target_df: DataFrame,
 test_name: str
) -> ReconciliationResult:
 """Compare row counts between source and target."""
 source_count = source_df.count()
 target_count = target_df.count()

 result = ReconciliationResult(
 test_name=test_name,
 source_system="legacy",
 target_system="databricks",
 timestamp=datetime.now(),
 passed=source_count == target_count,
 source_count=source_count,
 target_count=target_count,
 matched_count=min(source_count, target_count),
 source_only_count=max(0, source_count - target_count),
 target_only_count=max(0, target_count - source_count),
 value_mismatch_count=0,
 details={"count_difference": source_count - target_count}
)

 self.results.append(result)
 return result

 def compare_data(
 self,
 source_df: DataFrame,
 target_df: DataFrame,
 key_columns: List[str],
 compare_columns: List[str],
 test_name: str,
 tolerance: float = 0.001
) -> ReconciliationResult:
 """
 Full data comparison between source and target.

 Args:
 source_df: Source DataFrame
 target_df: Target DataFrame
 key_columns: Columns to join on
 compare_columns: Columns to compare values
 test_name: Name of the test
 tolerance: Tolerance for numeric comparisons

 Returns:
 ReconciliationResult with detailed comparison
 """
 # Row counts
 source_count = source_df.count()
 target_count = target_df.count()

 # Find records only in source
 source_only = source_df.join(target_df, key_columns, "left_anti")
 source_only_count = source_only.count()

 # Find records only in target
 target_only = target_df.join(source_df, key_columns, "left_anti")
 target_only_count = target_only.count()

 # Find matched records with value differences
 matched = source_df.alias("s").join(
 target_df.alias("t"),
 key_columns,
 "inner"
)
 matched_count = matched.count()

 # Check for value mismatches
 mismatch_conditions = []
 for col in compare_columns:
 col_type = dict(source_df.dtypes).get(col, "string")

 if col_type in ("double", "float", "decimal"):
 # Numeric comparison with tolerance
 mismatch_conditions.append(
 F.abs(F.col(f"s.{col}") - F.col(f"t.{col}")) > tolerance
)
 else:
 # Exact comparison
 mismatch_conditions.append(
 (F.col(f"s.{col}") != F.col(f"t.{col}")) |
 (F.col(f"s.{col}").isNull() != F.col(f"t.{col}").isNull())
)

 if mismatch_conditions:
 from functools import reduce
 combined_condition = reduce(lambda a, b: a | b, mismatch_conditions)
 value_mismatches = matched.filter(combined_condition)
 value_mismatch_count = value_mismatches.count()
 else:
 value_mismatch_count = 0

 # Determine overall pass/fail
 passed = (
 source_count == target_count and
 source_only_count == 0 and
 target_only_count == 0 and
 value_mismatch_count == 0
)

 result = ReconciliationResult(
 test_name=test_name,
 source_system="legacy",
 target_system="databricks",
 timestamp=datetime.now(),
 passed=passed,
 source_count=source_count,
 target_count=target_count,
 matched_count=matched_count,
 source_only_count=source_only_count,
 target_only_count=target_only_count,
 value_mismatch_count=value_mismatch_count,
 details={
 "key_columns": key_columns,
 "compare_columns": compare_columns,
 "tolerance": tolerance
 }
)

 self.results.append(result)
 return result

 def compare_aggregates(
 self,
 source_df: DataFrame,
 target_df: DataFrame,
 group_columns: List[str],
 agg_column: str,
 test_name: str,
 tolerance_pct: float = 0.01
) -> ReconciliationResult:
 """
 Compare aggregate values between source and target.

 Args:
 source_df: Source DataFrame
 target_df: Target DataFrame
 group_columns: Columns to group by
 agg_column: Column to aggregate
 test_name: Name of the test
 tolerance_pct: Percentage tolerance (0.01 = 1%)

 Returns:
 ReconciliationResult
 """
 # Aggregate source
 source_agg = source_df.groupBy(*group_columns).agg(
 F.sum(agg_column).alias("source_sum"),
 F.count("*").alias("source_count")
)

 # Aggregate target
 target_agg = target_df.groupBy(*group_columns).agg(
 F.sum(agg_column).alias("target_sum"),
 F.count("*").alias("target_count")
)

 # Compare
 comparison = source_agg.join(
 target_agg,
 group_columns,
 "full_outer"
)

 # Find mismatches
 mismatches = comparison.filter(
 (F.col("source_sum").isNull()) |
 (F.col("target_sum").isNull()) |
 (F.abs(F.col("source_sum") - F.col("target_sum")) /
 F.greatest(F.abs(F.col("source_sum")), F.lit(1)) > tolerance_pct)
)

 mismatch_count = mismatches.count()
 total_groups = comparison.count()

 result = ReconciliationResult(
 test_name=test_name,
 source_system="legacy",
 target_system="databricks",
 timestamp=datetime.now(),
 passed=mismatch_count == 0,
 source_count=total_groups,
 target_count=total_groups,
 matched_count=total_groups - mismatch_count,
 source_only_count=0,
 target_only_count=0,
 value_mismatch_count=mismatch_count,
 details={
 "group_columns": group_columns,
 "agg_column": agg_column,
 "tolerance_pct": tolerance_pct
 }
)

 self.results.append(result)
 return result

 def generate_report(self) -> DataFrame:
 """Generate reconciliation report from all results."""
 report_data = [
 {
 "test_name": r.test_name,
 "source_system": r.source_system,
 "target_system": r.target_system,
 "timestamp": r.timestamp.isoformat(),
 "passed": r.passed,
 "source_count": r.source_count,
 "target_count": r.target_count,
 "matched_count": r.matched_count,
 "source_only_count": r.source_only_count,
 "target_only_count": r.target_only_count,
 "value_mismatch_count": r.value_mismatch_count
 }
 for r in self.results
]

 return self.spark.createDataFrame(report_data)

4.2 Reconciliation Test Examples
tests/reconciliation/test_customer_migration.py
import pytest
from reconciliation_framework import DataReconciliator

class TestCustomerMigration:
 """Reconciliation tests for customer data migration."""

 @pytest.fixture
 def reconciliator(self, spark):
 return DataReconciliator(spark)

 @pytest.fixture
 def legacy_customers(self, spark):
 """Load legacy customer export."""
 return spark.read.parquet("/exports/legacy/customers/")

 @pytest.fixture
 def databricks_customers(self, spark):
 """Load migrated customer data."""
 return spark.table("silver.customers")

 def test_customer_count_matches(
 self,
 reconciliator,
 legacy_customers,
 databricks_customers
):
 """Row count should match between legacy and Databricks."""
 result = reconciliator.compare_counts(
 legacy_customers,
 databricks_customers,
 "customer_count_check"
)
 assert result.passed, f"Count mismatch: {result.source_count} vs {result.target_count}"

 def test_customer_data_matches(
 self,
 reconciliator,
 legacy_customers,
 databricks_customers
):
 """All customer records should match."""
 result = reconciliator.compare_data(
 legacy_customers,
 databricks_customers,
 key_columns=["customer_id"],
 compare_columns=["name", "email", "phone", "status"],
 test_name="customer_data_check"
)
 assert result.passed, f"Data mismatch: {result.value_mismatch_count} mismatches"

 def test_customer_balance_totals(
 self,
 reconciliator,
 legacy_customers,
 databricks_customers
):
 """Balance totals should match within 0.1%."""
 result = reconciliator.compare_aggregates(
 legacy_customers,
 databricks_customers,
 group_columns=["customer_segment"],
 agg_column="balance",
 test_name="customer_balance_totals",
 tolerance_pct=0.001
)
 assert result.passed, f"Balance mismatch for {result.value_mismatch_count} segments"

__
5. Integration Testing
5.1 Integration Test Framework
tests/integration/test_etl_pipeline.py
import pytest
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.jobs import RunResultState
from datetime import datetime, timedelta

class TestETLPipelineIntegration:
 """Integration tests for complete ETL pipeline."""

 @pytest.fixture
 def workspace_client(self):
 return WorkspaceClient()

 @pytest.fixture
 def job_name(self):
 return "Customer_ETL_Pipeline_Test"

 def test_pipeline_completes_successfully(
 self,
 workspace_client,
 job_name
):
 """Pipeline should complete without errors."""
 # Find the job
 jobs = list(workspace_client.jobs.list(name=job_name))
 assert len(jobs) > 0, f"Job '{job_name}' not found"

 job = jobs[0]

 # Trigger run
 run = workspace_client.jobs.run_now(job_id=job.job_id)

 # Wait for completion (with timeout)
 result = workspace_client.jobs.wait_get_run_job_terminated_or_skipped(
 run_id=run.run_id,
 timeout=timedelta(hours=1)
)

 assert result.state.result_state == RunResultState.SUCCESS, \
 f"Pipeline failed: {result.state.state_message}"

 def test_output_tables_populated(self, spark):
 """Output tables should have data after pipeline run."""
 tables_to_check = [
 "silver.customers",
 "silver.orders",
 "gold.customer_summary"
]

 for table in tables_to_check:
 count = spark.table(table).count()
 assert count > 0, f"Table {table} is empty"

 def test_data_freshness(self, spark):
 """Data should be recent (within last 24 hours)."""
 max_timestamp = spark.table("silver.customers").agg(
 F.max("_processed_at")
).collect()[0][0]

 assert max_timestamp >= datetime.now() - timedelta(hours=24), \
 f"Data is stale: last update was {max_timestamp}"

 def test_referential_integrity(self, spark):
 """Foreign key relationships should be valid."""
 # Check orders reference valid customers
 orphan_orders = spark.sql("""
 SELECT COUNT(*) as orphan_count
 FROM silver.orders o
 LEFT JOIN silver.customers c ON o.customer_id = c.customer_id
 WHERE c.customer_id IS NULL
 """).collect()[0]["orphan_count"]

 assert orphan_orders == 0, f"Found {orphan_orders} orders without valid customer"

__
6. UAT Testing
6.1 UAT Test Cases Template
tests/uat/uat_test_cases.py
"""
User Acceptance Test Cases

These tests are designed to be run by business users to validate
that the migrated system meets business requirements.
"""

class UATTestCases:
 """UAT test cases for business validation."""

 @staticmethod
 def test_case_001_customer_count():
 """
 Test Case: UAT-001
 Description: Verify total active customer count matches business expectations
 Expected: Customer count should be within 1% of legacy system count
 Business Owner: Customer Analytics Team

 Steps:
 1. Run query to get Databricks customer count
 2. Compare with legacy system report
 3. Verify difference is within tolerance
 """
 pass

 @staticmethod
 def test_case_002_revenue_totals():
 """
 Test Case: UAT-002
 Description: Verify monthly revenue totals match legacy reports
 Expected: Revenue should match within $100 per month
 Business Owner: Finance Team

 Steps:
 1. Generate monthly revenue report from Databricks
 2. Compare with legacy financial reports
 3. Investigate any discrepancies > $100
 """
 pass

 @staticmethod
 def test_case_003_customer_segments():
 """
 Test Case: UAT-003
 Description: Verify customer segmentation logic produces correct results
 Expected: Segment distribution should match legacy system
 Business Owner: Marketing Team

 Steps:
 1. Run segmentation query in Databricks
 2. Compare segment counts with legacy system
 3. Spot check 10 customers per segment
 """
 pass

__
7. Test Automation and CI/CD Integration
7.1 GitHub Actions Test Workflow
.github/workflows/tests.yml
name: Run Migration Tests

on:
 push:
 branches: [main, develop]
 pull_request:
 branches: [main]

jobs:
 unit-tests:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v4

 - name: Set up Python
 uses: actions/setup-python@v4
 with:
 python-version: '3.10'

 - name: Install dependencies
 run: |
 pip install -r requirements.txt
 pip install pytest pytest-cov pyspark

 - name: Run unit tests
 run: pytest tests/unit/ -v --cov=src --cov-report=xml

 - name: Upload coverage
 uses: codecov/codecov-action@v3

 integration-tests:
 runs-on: ubuntu-latest
 needs: unit-tests
 if: github.ref == 'refs/heads/main'
 steps:
 - uses: actions/checkout@v4

 - name: Run integration tests
 env:
 DATABRICKS_HOST: ${{ secrets.DATABRICKS_HOST }}
 DATABRICKS_TOKEN: ${{ secrets.DATABRICKS_TOKEN }}
 run: pytest tests/integration/ -v

 reconciliation-tests:
 runs-on: ubuntu-latest
 needs: integration-tests
 steps:
 - uses: actions/checkout@v4

 - name: Run reconciliation tests
 env:
 DATABRICKS_HOST: ${{ secrets.DATABRICKS_HOST }}
 DATABRICKS_TOKEN: ${{ secrets.DATABRICKS_TOKEN }}
 run: pytest tests/reconciliation/ -v

__
8. Test Metrics and Reporting
8.1 Test Metrics Dashboard
-- Test execution metrics
SELECT
 test_suite,
 COUNT(*) as total_tests,
 SUM(CASE WHEN passed THEN 1 ELSE 0 END) as passed,
 SUM(CASE WHEN NOT passed THEN 1 ELSE 0 END) as failed,
 ROUND(SUM(CASE WHEN passed THEN 1 ELSE 0 END) * 100.0 / COUNT(*), 2) as pass_rate,
 AVG(execution_time_seconds) as avg_duration
FROM testing.test_results
WHERE execution_date > current_date() - INTERVAL 7 DAYS
GROUP BY test_suite
ORDER BY pass_rate ASC;

__
Document Control:
Version: 1.0
Created: 2025-01-24
Last Review: 2025-01-24
Next Review: 2025-04-24

