LLM Code Conversion Architecture

LLM CODE CONVERSION
ARCHITECTURE

End-to-End System Design for AI-Powered Legacy Code Modernization

━━

SAS → PySpark • Informatica → Data Factory • SSIS → Fabric Pipelines

Version 1.0 | Confidential

Table of Contents

1. Executive Summary
This document defines the end-to-end architecture for our LLM-powered code conversion accelerator. The system transforms legacy SAS, Informatica, and SSIS code into modern PySpark and Microsoft Fabric equivalents with high accuracy, auditability, and human oversight.
1.1 Architecture Principles
1. Human-in-the-Loop: Every conversion passes through expert review before acceptance
1. Confidence-Scored: Each output includes a machine-generated confidence score guiding review intensity
1. Auditable: Complete lineage from source to target with full prompt and response logging
1. Domain-Aware: Healthcare payer terminology embedded in prompts and validation rules
1. Iterative: Multi-pass conversion with self-correction and refinement capabilities
1. Testable: Generated code includes unit tests and reconciliation hooks
1.2 Key Metrics
	Metric
	Target
	Measurement

	First-Pass Accuracy
	> 85%
	Code review pass rate

	Conversion Velocity
	50+ programs/week
	Per conversion team

	Rework Rate
	< 15%
	Post-review corrections

	Output Equivalence
	100%
	Data reconciliation

2. System Architecture Overview
2.1 High-Level Architecture
The LLM Code Conversion system consists of six integrated layers, each with specific responsibilities in the conversion pipeline:
	Layer
	Components
	Responsibility

	1. Ingestion
	Code Scanner, Parser, Inventory DB
	Extract and catalog legacy assets

	2. Analysis
	Complexity Analyzer, Dependency Mapper
	Assess conversion difficulty

	3. Prompt Engineering
	Template Engine, Context Builder
	Construct optimal LLM prompts

	4. LLM Execution
	Model Router, Response Parser
	Execute conversion via LLM

	5. Validation
	Syntax Checker, Semantic Validator
	Verify output correctness

	6. Review & Deploy
	Review UI, CI/CD Integration
	Human review and deployment

2.2 Data Flow
The conversion pipeline processes code through a series of well-defined stages:
┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ LEGACY │───▶│ ANALYSIS │───▶│ PROMPT │───▶│ LLM │
│ CODE │ │ ENGINE │ │ BUILDER │ │ ENGINE │
└─────────────┘ └─────────────┘ └─────────────┘ └──────┬──────┘
 │
┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ DEPLOY │◀───│ HUMAN │◀───│ VALIDATE │◀─────────┘
│ TO ENV │ │ REVIEW │ │ OUTPUT │
└─────────────┘ └─────────────┘ └─────────────┘

3. Layer 1: Code Ingestion
3.1 Source Code Scanner
The scanner extracts legacy code from source repositories and file systems, normalizing formats and extracting metadata.
3.1.1 Supported Source Types
	Platform
	File Types
	Extraction Method
	Metadata Captured

	SAS
	.sas, .egp, .sas7bdat
	File system, EG export
	Macros, libraries, datasets

	Informatica
	.xml, repository export
	Repository Manager API
	Mappings, sessions, workflows

	SSIS
	.dtsx, .ispac
	File system, SSISDB
	Packages, connections, variables

3.1.2 Code Normalization
All ingested code undergoes normalization to ensure consistent processing:
1. Encoding standardization to UTF-8
1. Line ending normalization (CRLF → LF)
1. Comment extraction and preservation
1. Macro/variable expansion tracking
1. Include/import resolution and inlining
3.2 Inventory Database
Every code asset is cataloged in a central inventory database with the following schema:
CREATE TABLE code_inventory (
 asset_id UUID PRIMARY KEY,
 source_platform VARCHAR(50), -- SAS, INFORMATICA, SSIS
 asset_type VARCHAR(50), -- PROGRAM, MAPPING, PACKAGE
 asset_name VARCHAR(255),
 file_path VARCHAR(1000),
 raw_content TEXT,
 normalized_content TEXT,
 line_count INTEGER,
 complexity_score DECIMAL(5,2),
 dependencies JSONB, -- Array of dependent assets
 domain_tags JSONB, -- Claims, Eligibility, etc.
 ingestion_date TIMESTAMP,
 conversion_status VARCHAR(50) -- PENDING, IN_PROGRESS, COMPLETE
);

4. Layer 2: Analysis Engine
4.1 Complexity Analyzer
The complexity analyzer assesses each code asset to determine conversion difficulty and resource allocation.
4.1.1 Complexity Scoring Model
	Factor
	Weight
	Scoring Criteria

	Lines of Code
	15%
	< 100: Low, 100-500: Med, > 500: High

	Cyclomatic Complexity
	20%
	Branch/loop depth analysis

	External Dependencies
	20%
	Count of external calls/libraries

	Data Transformations
	15%
	Number of transform operations

	Dynamic Code
	15%
	Macro variables, dynamic SQL

	Domain Specificity
	15%
	Healthcare-specific constructs

4.1.2 Complexity Tiers
	Tier
	Score Range
	Conversion Approach
	Review Level

	Simple
	0 - 30
	Single-pass LLM, automated tests
	Automated + spot check

	Medium
	31 - 60
	Multi-pass LLM, guided prompts
	Developer review required

	Complex
	61 - 80
	Decomposition + iterative conversion
	Senior engineer review

	Expert
	81 - 100
	Human-assisted with LLM support
	Architect + SME review

4.2 Dependency Mapper
The dependency mapper builds a complete graph of relationships between code assets, enabling proper conversion sequencing.
4.2.1 Dependency Types
1. Data Dependencies: Tables, files, datasets read or written
1. Code Dependencies: Includes, macros, shared libraries
1. Execution Dependencies: Job sequences, triggers, schedules
1. External Dependencies: APIs, databases, external systems
4.2.2 Conversion Sequencing
Dependencies drive the conversion wave plan:
1. Leaf nodes (no dependencies) converted first
1. Shared libraries and macros prioritized for reuse
1. Circular dependencies flagged for manual review
1. Critical path analysis for timeline planning

5. Layer 3: Prompt Engineering
5.1 Prompt Architecture
The prompt engineering layer constructs optimized prompts for each conversion task. Prompts are assembled from modular components:
	Component
	Description

	System Context
	Role definition, expertise level, output format requirements

	Domain Context
	Healthcare payer terminology, business rules, compliance requirements

	Technical Context
	Source platform specifics, target platform capabilities

	Conversion Rules
	Mapping patterns, anti-patterns, edge case handling

	Examples
	Few-shot examples of similar conversions

	Source Code
	The actual code to be converted

	Output Spec
	Required format, comments, test stubs

5.2 Prompt Template Structure
┌──┐
│ SYSTEM PROMPT │
│ ┌──┐ │
│ │ You are an expert code conversion engineer specializing in │ │
│ │ migrating {source_platform} to {target_platform}. │ │
│ │ Domain: Healthcare Payer (Claims, Eligibility, Providers) │ │
│ └──┘ │
├──┤
│ DOMAIN CONTEXT │
│ ┌──┐ │
│ │ Terminology: Member = Enrollee, Provider = Facility/Physician│ │
│ │ Key Entities: Claims, Eligibility Spans, Provider Contracts │ │
│ │ Compliance: HIPAA, CMS Reporting, State Medicaid Requirements│ │
│ └──┘ │
├──┤
│ CONVERSION RULES (Platform-Specific) │
│ ┌──┐ │
│ │ - DATA step → df.withColumn() transformations │ │
│ │ - PROC SQL → spark.sql() or DataFrame API │ │
│ │ - Macro variables → Python parameters or config │ │
│ └──┘ │
├──┤
│ FEW-SHOT EXAMPLES │
│ ┌──┐ │
│ │ Example 1: [Similar complexity pattern] │ │
│ │ Example 2: [Edge case handling] │ │
│ └──┘ │
├──┤
│ SOURCE CODE │
│ ┌──┐ │
│ │ {actual_legacy_code} │ │
│ └──┘ │
├──┤
│ OUTPUT REQUIREMENTS │
│ ┌──┐ │
│ │ 1. Converted code with inline comments │ │
│ │ 2. Mapping notes (what changed and why) │ │
│ │ 3. Confidence score (0-100) │ │
│ │ 4. Test case stubs │ │
│ └──┘ │
└──┘

5.3 Context Window Management
Large legacy programs may exceed LLM context limits. The system handles this through intelligent chunking:
5.3.1 Chunking Strategy
1. Logical Unit Chunking: Split at procedure/function boundaries
1. Dependency Preservation: Keep related code together
1. Context Overlap: Include surrounding context for each chunk
1. Reassembly Instructions: Generate merge guidance for chunks
5.3.2 Context Budget Allocation
	Component
	Token Budget
	% of Context

	System + Domain Context
	~2,000
	10%

	Conversion Rules
	~3,000
	15%

	Few-Shot Examples
	~4,000
	20%

	Source Code
	~8,000
	40%

	Output Space
	~3,000
	15%

📘 For a 20K context window model. Adjust proportionally for larger models (Claude 3.5: 200K, GPT-4: 128K).

6. Layer 4: LLM Execution Engine
6.1 Model Selection
The system supports multiple LLM providers with intelligent routing based on task requirements:
	Model
	Context
	Best For
	Cost Tier

	Claude 3.5 Sonnet
	200K
	Complex logic, long programs
	Medium

	Claude 3 Opus
	200K
	Expert-tier, nuanced code
	High

	GPT-4 Turbo
	128K
	General conversion
	Medium

	GPT-4o
	128K
	Fast iteration, simple code
	Low-Medium

	Code Llama 70B
	16K
	Simple patterns, high volume
	Low

6.2 Execution Pipeline
6.2.1 Multi-Pass Conversion
Complex conversions use multiple LLM passes for improved accuracy:
Pass 1 - Initial Conversion: Generate first-draft converted code
Pass 2 - Self-Review: LLM reviews its own output for errors
Pass 3 - Optimization: Refactor for performance and readability
Pass 4 - Test Generation: Generate unit tests for the converted code
6.2.2 Response Parsing
LLM responses are structured and parsed into discrete components:
{
 "converted_code": "...",
 "mapping_notes": [
 {"original": "DATA step", "converted": "DataFrame transform", "reason": "..."}
],
 "confidence_score": 87,
 "confidence_factors": {
 "syntax_confidence": 95,
 "semantic_confidence": 82,
 "edge_case_coverage": 78
 },
 "warnings": ["Macro X may need manual review"],
 "test_stubs": ["def test_member_filter(): ..."]
}

6.3 Error Handling & Retry Logic
6.3.1 Retry Strategy
	Error Type
	Retry Strategy
	Max Retries

	Rate Limit
	Exponential backoff
	5

	Timeout
	Retry with chunking
	3

	Invalid Response
	Retry with stricter format
	2

	Low Confidence
	Switch to higher-tier model
	1

	Context Overflow
	Auto-chunk and retry
	1

6.3.2 Fallback Chain
Primary: Claude 3.5 Sonnet (200K context)
 │
 ├── On failure/low confidence ──▶ Claude 3 Opus
 │
 ├── On context overflow ──▶ Chunk + Claude 3.5 Sonnet
 │
 └── On persistent failure ──▶ Flag for manual conversion

7. Layer 5: Validation Engine
7.1 Validation Pipeline
Every converted code artifact passes through a multi-stage validation pipeline:
┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ SYNTAX │──▶│ SEMANTIC │──▶│ UNIT │──▶│ DATA │
│ CHECK │ │ ANALYSIS │ │ TESTS │ │ RECON │
└─────────────┘ └─────────────┘ └─────────────┘ └─────────────┘
7.2 Validation Stages
7.2.1 Syntax Validation
1. Parse converted code with target language parser
1. Check for syntax errors, undefined variables
1. Validate import statements and dependencies
1. Verify code compiles/interprets without errors
7.2.2 Semantic Validation
1. Static analysis for logic errors
1. Data type compatibility checks
1. Control flow analysis
1. Dead code detection
7.2.3 Unit Test Execution
1. Run LLM-generated test cases
1. Execute predefined pattern tests
1. Check edge case handling
1. Measure code coverage
7.2.4 Data Reconciliation
1. Run converted code on sample data
1. Compare output to legacy system output
1. Statistical comparison for large datasets
1. Flag discrepancies for review

7.3 Confidence Score Calculation
The final confidence score is a weighted combination of multiple factors:
	Factor
	Weight
	Calculation

	LLM Self-Reported Confidence
	25%
	From model response

	Syntax Validation Pass
	20%
	Binary: 100 if pass, 0 if fail

	Semantic Analysis Score
	15%
	Static analysis findings

	Unit Test Pass Rate
	20%
	% of tests passing

	Pattern Match Score
	10%
	Similarity to known-good patterns

	Complexity Penalty
	10%
	Deduction for high complexity

7.4 Validation Thresholds
	Score Range
	Status
	Action
	Review Required

	90-100
	HIGH
	Auto-advance to deployment
	Spot check (10%)

	75-89
	MEDIUM
	Standard review queue
	Developer review

	50-74
	LOW
	Enhanced review
	Senior engineer

	0-49
	FAIL
	Reject and re-convert
	Root cause analysis

8. Layer 6: Human Review & Deployment
8.1 Review Interface
The review interface provides side-by-side comparison of source and converted code with rich annotations:
8.1.1 Review Features
1. Side-by-side diff view: Original vs. Converted
1. Inline mapping annotations showing transformation logic
1. Confidence score breakdown by component
1. Warning highlights requiring attention
1. One-click approve, reject, or request changes
1. Comment threads for collaboration
8.1.2 Review Workflow States
PENDING ──▶ IN_REVIEW ──▶ APPROVED ──▶ DEPLOYED
 │ │
 │ ├──▶ CHANGES_REQUESTED ──▶ RE_CONVERTED
 │ │
 │ └──▶ REJECTED ──▶ MANUAL_QUEUE
8.2 Deployment Pipeline
8.2.1 CI/CD Integration
Approved conversions flow directly into the deployment pipeline:
1. Automatic branch creation in target repository
1. Pull request with conversion metadata
1. Automated CI tests (lint, unit, integration)
1. Deployment to development environment
1. Promotion gates to staging and production
8.2.2 Rollback Capability
Every deployment maintains rollback capability:
1. Original code preserved in archive
1. Conversion metadata stored for audit
1. One-click rollback to previous version
1. Automatic alerts on production issues

9. Infrastructure & Scalability
9.1 Deployment Architecture
┌──┐
│ AZURE INFRASTRUCTURE │
├──┤
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ Azure │ │ Azure │ │ Azure │ │
│ │ Functions │ │ OpenAI │ │ Cosmos DB │ │
│ │ (Orchestr) │ │ (LLM API) │ │ (State) │ │
│ └──────┬──────┘ └──────┬──────┘ └──────┬──────┘ │
│ │ │ │ │
│ ┌──────┴────────────────┴────────────────┴──────┐ │
│ │ Azure Service Bus │ │
│ │ (Message Queue / Events) │ │
│ └──────┬────────────────┬────────────────┬──────┘ │
│ │ │ │ │
│ ┌──────┴──────┐ ┌──────┴──────┐ ┌──────┴──────┐ │
│ │ Ingestion │ │ Conversion │ │ Validation │ │
│ │ Workers │ │ Workers │ │ Workers │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
└──┘
9.2 Scalability Metrics
	Component
	Capacity
	Scale Trigger

	Ingestion Workers
	10 concurrent
	Queue depth > 100

	Conversion Workers
	20 concurrent
	Queue depth > 50

	Validation Workers
	15 concurrent
	Queue depth > 75

	LLM API Calls
	100 RPM
	Rate limit approach

10. Security & Compliance
10.1 Data Security
1. All code transmitted over TLS 1.3
1. Code at rest encrypted with AES-256
1. LLM API calls use enterprise agreements (no training on data)
1. PHI detection and masking before LLM submission
1. Audit logs retained for 7 years
10.2 Access Control
1. Role-based access control (RBAC) for all components
1. Separate roles: Viewer, Reviewer, Approver, Admin
1. Multi-factor authentication required
1. Just-in-time access for production systems
10.3 Compliance
	Requirement
	Implementation

	HIPAA
	PHI never sent to LLM; masked/tokenized first

	SOC 2
	Full audit trail, access logging, encryption

	Data Residency
	All processing in Azure US regions

	IP Protection
	Enterprise LLM agreements, no model training

Appendix A: Glossary
	Term
	Definition

	Confidence Score
	0-100 rating of conversion quality and reliability

	Complexity Tier
	Classification of code difficulty (Simple/Medium/Complex/Expert)

	Few-Shot Examples
	Sample conversions included in prompts to guide the LLM

	Human-in-the-Loop
	Mandatory human review before deployment

	Multi-Pass Conversion
	Multiple LLM iterations for improved accuracy

	Prompt Engineering
	Crafting optimal instructions for LLM performance

Appendix B: Document Information
	Document Title
	LLM Code Conversion Architecture

	Version
	1.0

	Classification
	Confidential - Internal Use

	Owner
	Data Modernization Practice

	Last Updated
	January 2025

Page of
