Conversion Confidence Scoring Framework

CONVERSION CONFIDENCE
SCORING FRAMEWORK

Quantitative Assessment of LLM Code Conversion Quality

Version 1.0 | Confidential

Table of Contents

1. Overview
The Confidence Scoring Framework provides a standardized method for assessing the quality and reliability of LLM-generated code conversions. Scores drive review intensity and deployment decisions.
1.1 Score Ranges and Actions
	Score
	Level
	Action
	Review Requirement

	90-100
	HIGH
	Auto-advance to testing
	Spot check (10% sample)

	75-89
	MEDIUM
	Standard review queue
	Full developer review

	50-74
	LOW
	Enhanced review
	Senior engineer + SME

	0-49
	FAIL
	Reject and re-attempt
	Root cause analysis

2. Scoring Components
2.1 Component Weights
	Component
	Weight
	Description

	LLM Self-Confidence
	20%
	Model-reported confidence

	Syntax Validation
	20%
	Code compiles without errors

	Semantic Analysis
	15%
	Static analysis findings

	Pattern Matching
	15%
	Similarity to known-good conversions

	Test Coverage
	15%
	Generated tests pass rate

	Complexity Adjustment
	15%
	Deduction for high complexity

2.2 LLM Self-Confidence (20%)
The LLM provides a self-assessed confidence score based on:
1. Pattern recognition: Has it seen similar conversions?
1. Completeness: Are all source elements addressed?
1. Ambiguity: Were there unclear constructs?
1. Domain alignment: Does output match healthcare patterns?
Prompt instruction for self-confidence:

Rate your confidence in this conversion from 0-100 based on:
- 90-100: High confidence, straightforward conversion
- 70-89: Good confidence, minor uncertainties
- 50-69: Moderate confidence, some complex areas
- Below 50: Low confidence, significant concerns

2.3 Syntax Validation (20%)
Binary pass/fail converted to score:
1. 100 points: Code parses without errors
1. 50 points: Minor syntax issues auto-correctable
1. 0 points: Fails to parse
Validation process:
1. Parse with Python AST parser
2. Import check (all imports resolve)
3. Type hint validation
4. Docstring presence check
2.4 Semantic Analysis (15%)
Static analysis checks using tools like pylint, mypy:
1. Undefined variables: -10 per occurrence
1. Unused imports: -2 per occurrence
1. Type mismatches: -5 per occurrence
1. Unreachable code: -5 per occurrence
1. Missing return statements: -10 per occurrence
2.5 Pattern Matching (15%)
Comparison against library of validated conversion patterns:
1. Exact pattern match: 100 points
1. High similarity (>80%): 80 points
1. Moderate similarity (50-80%): 60 points
1. Low similarity (<50%): 40 points

2.6 Test Coverage (15%)
Score based on generated test execution:
1. All tests pass: 100 points
1. 90%+ pass rate: 80 points
1. 70-89% pass rate: 60 points
1. Below 70%: 40 points
2.7 Complexity Adjustment (15%)
Deduction based on source code complexity:
	Complexity Tier
	Score Range
	Adjustment

	Simple (0-30)
	Base score
	No adjustment

	Medium (31-60)
	Score - 5
	-5 points

	Complex (61-80)
	Score - 10
	-10 points

	Expert (81-100)
	Score - 15
	-15 points

3. Score Calculation
3.1 Formula
Final Score = (
 LLM_Confidence * 0.20 +
 Syntax_Score * 0.20 +
 Semantic_Score * 0.15 +
 Pattern_Score * 0.15 +
 Test_Score * 0.15 +
 (100 - Complexity_Penalty) * 0.15
)
3.2 Example Calculation
Source: Medium complexity SAS program (complexity score: 45)

LLM Self-Confidence: 85
Syntax Validation: 100 (passes)
Semantic Analysis: 90 (minor warnings)
Pattern Matching: 80 (high similarity)
Test Coverage: 85 (95% pass rate)
Complexity Adjustment: 95 (100 - 5 penalty)

Final Score = (85*0.20) + (100*0.20) + (90*0.15) +
 (80*0.15) + (85*0.15) + (95*0.15)
 = 17 + 20 + 13.5 + 12 + 12.75 + 14.25
 = 89.5 -> MEDIUM confidence
 -> Standard developer review required
Appendix: Document Information
	Document Title
	Conversion Confidence Scoring Framework

	Version
	1.0

	Classification
	Confidential

	Last Updated
	January 2025

Page of
