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1. Overview
This playbook documents known edge cases in legacy code conversion and provides strategies for handling them. Use this guide when the LLM encounters difficult patterns or produces low-confidence outputs.
1.1 Edge Case Categories
	Category
	Examples
	Strategy

	Language Gaps
	No direct equivalent
	Pattern substitution

	Dynamic Code
	Runtime code generation
	Configuration-based

	Platform Specifics
	OS/DB dependencies
	Abstraction layer

	Data Type Mismatches
	Precision differences
	Explicit casting

	External Dependencies
	Legacy APIs, files
	Adapter pattern





2. SAS-Specific Edge Cases
2.1 SAS Macro Language
2.1.1 Problem: Dynamic Code Generation
SAS macros can generate arbitrary code at compile time:
/* SAS: Dynamic column list */
%macro sum_columns(prefix, count);
  %do i = 1 %to &count;
    &prefix.&i +
  %end;
  0
%mend;
2.1.2 Solution: Python Code Generation
# PySpark: Generate column list dynamically
def sum_columns(df, prefix: str, count: int):
    columns = [f'{prefix}{i}' for i in range(1, count + 1)]
    expr = sum(F.col(c) for c in columns)
    return df.withColumn('total', expr)

2.2 SAS RETAIN Statement
2.2.1 Problem: Row-to-Row Value Carryover
/* SAS: Running total with RETAIN */
DATA running;
  SET transactions;
  BY account_id;
  RETAIN running_balance 0;
  IF FIRST.account_id THEN running_balance = 0;
  running_balance = running_balance + amount;
RUN;
2.2.2 Solution: Window Functions
# PySpark: Window-based running total
from pyspark.sql.window import Window
from pyspark.sql.functions import sum as spark_sum

window = Window.partitionBy('account_id').orderBy('transaction_date')
             .rowsBetween(Window.unboundedPreceding, Window.currentRow)

result = df.withColumn('running_balance', spark_sum('amount').over(window))



2.3 SAS Hash Objects
2.3.1 Problem: In-Memory Lookups
/* SAS: Hash table lookup */
DATA enriched;
  IF _N_ = 1 THEN DO;
    DECLARE HASH h(dataset:'lookup_table');
    h.defineKey('key_col');
    h.defineData('value_col');
    h.defineDone();
  END;
  SET main_table;
  rc = h.find();
RUN;
2.3.2 Solution: Broadcast Join
# PySpark: Broadcast join for small lookups
from pyspark.sql.functions import broadcast

lookup_df = spark.table('lookup_table').select('key_col', 'value_col')

result = main_df.join(
    broadcast(lookup_df),
    on='key_col',
    how='left'
)



3. Informatica Edge Cases
3.1 Unconnected Lookups
3.1.1 Problem: :LKP Expression Calls
Informatica allows calling lookups within expressions using :LKP syntax:
/* Informatica Expression */
IIF(status = 'A',
    :LKP.lkp_member_name(member_id),
    'INACTIVE')

3.1.2 Solution: Pre-Join or UDF
# Option 1: Pre-join the lookup (preferred)
df_with_lookup = df.join(
    broadcast(member_lookup_df),
    on='member_id',
    how='left'
)
result = df_with_lookup.withColumn(
    'display_name',
    when(col('status') == 'A', col('member_name'))
    .otherwise(lit('INACTIVE'))
)

3.2 Router Transformation
3.2.1 Problem: Multiple Output Groups
/* Informatica Router Groups */
Group 1: claim_type = 'MEDICAL'
Group 2: claim_type = 'DENTAL'
Group 3: claim_type = 'VISION'
Default: All others
3.2.2 Solution: Multiple Filters
# PySpark: Separate DataFrames for each route
medical_df = df.filter(col('claim_type') == 'MEDICAL')
dental_df = df.filter(col('claim_type') == 'DENTAL')
vision_df = df.filter(col('claim_type') == 'VISION')
other_df = df.filter(~col('claim_type').isin(['MEDICAL','DENTAL','VISION']))



4. SSIS Edge Cases
4.1 Script Tasks with C#
4.1.1 Problem: Complex C# Logic
SSIS Script Tasks can contain arbitrary C# code that may be difficult to convert:
// SSIS Script Task
public void Main() {
    string connStr = Dts.Variables['ConnectionString'].Value.ToString();
    using (var conn = new SqlConnection(connStr)) {
        // Complex data manipulation
    }
    Dts.TaskResult = ScriptResults.Success;
}
4.1.2 Solution: Python Notebook
# Fabric Notebook equivalent
connection_string = spark.conf.get('spark.connection.string')

# Use pyodbc or jdbc for direct database access if needed
# Or convert logic to PySpark DataFrame operations

4.2 Event Handlers
4.2.1 Problem: OnError, OnPreExecute Events
SSIS packages can have event handlers that execute on specific events.
4.2.2 Solution: Pipeline Activities
1. OnError: Use pipeline failure activities and alerts
1. OnPreExecute: Use Set Variable or Web Activity at start
1. OnPostExecute: Use activities after main process
1. OnProgress: Use pipeline monitoring and logging


5. General Edge Cases
5.1 Null Handling Differences
	Scenario
	SAS Behavior
	PySpark Behavior

	NULL + 5
	Returns 5
	Returns NULL

	NULL = NULL
	False
	NULL (unknown)

	SUM with NULLs
	Ignores NULLs
	Ignores NULLs

	String concat
	Treats as empty
	Returns NULL



5.2 Mitigation
# Always use coalesce for null-sensitive operations
from pyspark.sql.functions import coalesce, lit

# NULL + 5 = 5 (SAS behavior)
df.withColumn('result', coalesce(col('value'), lit(0)) + 5)

# String concat with NULL handling
df.withColumn('full_name',
    concat(coalesce(col('first'), lit('')),
           lit(' '),
           coalesce(col('last'), lit(''))))

5.3 Date Precision
1. SAS dates are integers (days since 1/1/1960)
1. SAS datetimes are floats (seconds since 1/1/1960)
1. PySpark uses standard date/timestamp types
1. Always verify date arithmetic matches exactly
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