Edge Case Handling Playbook

EDGE CASE
HANDLING PLAYBOOK

Managing Difficult Conversion Scenarios

Version 1.0 | Confidential

Table of Contents

1. Overview
This playbook documents known edge cases in legacy code conversion and provides strategies for handling them. Use this guide when the LLM encounters difficult patterns or produces low-confidence outputs.
1.1 Edge Case Categories
	Category
	Examples
	Strategy

	Language Gaps
	No direct equivalent
	Pattern substitution

	Dynamic Code
	Runtime code generation
	Configuration-based

	Platform Specifics
	OS/DB dependencies
	Abstraction layer

	Data Type Mismatches
	Precision differences
	Explicit casting

	External Dependencies
	Legacy APIs, files
	Adapter pattern

2. SAS-Specific Edge Cases
2.1 SAS Macro Language
2.1.1 Problem: Dynamic Code Generation
SAS macros can generate arbitrary code at compile time:
/* SAS: Dynamic column list */
%macro sum_columns(prefix, count);
 %do i = 1 %to &count;
 &prefix.&i +
 %end;
 0
%mend;
2.1.2 Solution: Python Code Generation
PySpark: Generate column list dynamically
def sum_columns(df, prefix: str, count: int):
 columns = [f'{prefix}{i}' for i in range(1, count + 1)]
 expr = sum(F.col(c) for c in columns)
 return df.withColumn('total', expr)

2.2 SAS RETAIN Statement
2.2.1 Problem: Row-to-Row Value Carryover
/* SAS: Running total with RETAIN */
DATA running;
 SET transactions;
 BY account_id;
 RETAIN running_balance 0;
 IF FIRST.account_id THEN running_balance = 0;
 running_balance = running_balance + amount;
RUN;
2.2.2 Solution: Window Functions
PySpark: Window-based running total
from pyspark.sql.window import Window
from pyspark.sql.functions import sum as spark_sum

window = Window.partitionBy('account_id').orderBy('transaction_date')
 .rowsBetween(Window.unboundedPreceding, Window.currentRow)

result = df.withColumn('running_balance', spark_sum('amount').over(window))

2.3 SAS Hash Objects
2.3.1 Problem: In-Memory Lookups
/* SAS: Hash table lookup */
DATA enriched;
 IF _N_ = 1 THEN DO;
 DECLARE HASH h(dataset:'lookup_table');
 h.defineKey('key_col');
 h.defineData('value_col');
 h.defineDone();
 END;
 SET main_table;
 rc = h.find();
RUN;
2.3.2 Solution: Broadcast Join
PySpark: Broadcast join for small lookups
from pyspark.sql.functions import broadcast

lookup_df = spark.table('lookup_table').select('key_col', 'value_col')

result = main_df.join(
 broadcast(lookup_df),
 on='key_col',
 how='left'
)

3. Informatica Edge Cases
3.1 Unconnected Lookups
3.1.1 Problem: :LKP Expression Calls
Informatica allows calling lookups within expressions using :LKP syntax:
/* Informatica Expression */
IIF(status = 'A',
 :LKP.lkp_member_name(member_id),
 'INACTIVE')

3.1.2 Solution: Pre-Join or UDF
Option 1: Pre-join the lookup (preferred)
df_with_lookup = df.join(
 broadcast(member_lookup_df),
 on='member_id',
 how='left'
)
result = df_with_lookup.withColumn(
 'display_name',
 when(col('status') == 'A', col('member_name'))
 .otherwise(lit('INACTIVE'))
)

3.2 Router Transformation
3.2.1 Problem: Multiple Output Groups
/* Informatica Router Groups */
Group 1: claim_type = 'MEDICAL'
Group 2: claim_type = 'DENTAL'
Group 3: claim_type = 'VISION'
Default: All others
3.2.2 Solution: Multiple Filters
PySpark: Separate DataFrames for each route
medical_df = df.filter(col('claim_type') == 'MEDICAL')
dental_df = df.filter(col('claim_type') == 'DENTAL')
vision_df = df.filter(col('claim_type') == 'VISION')
other_df = df.filter(~col('claim_type').isin(['MEDICAL','DENTAL','VISION']))

4. SSIS Edge Cases
4.1 Script Tasks with C#
4.1.1 Problem: Complex C# Logic
SSIS Script Tasks can contain arbitrary C# code that may be difficult to convert:
// SSIS Script Task
public void Main() {
 string connStr = Dts.Variables['ConnectionString'].Value.ToString();
 using (var conn = new SqlConnection(connStr)) {
 // Complex data manipulation
 }
 Dts.TaskResult = ScriptResults.Success;
}
4.1.2 Solution: Python Notebook
Fabric Notebook equivalent
connection_string = spark.conf.get('spark.connection.string')

Use pyodbc or jdbc for direct database access if needed
Or convert logic to PySpark DataFrame operations

4.2 Event Handlers
4.2.1 Problem: OnError, OnPreExecute Events
SSIS packages can have event handlers that execute on specific events.
4.2.2 Solution: Pipeline Activities
1. OnError: Use pipeline failure activities and alerts
1. OnPreExecute: Use Set Variable or Web Activity at start
1. OnPostExecute: Use activities after main process
1. OnProgress: Use pipeline monitoring and logging

5. General Edge Cases
5.1 Null Handling Differences
	Scenario
	SAS Behavior
	PySpark Behavior

	NULL + 5
	Returns 5
	Returns NULL

	NULL = NULL
	False
	NULL (unknown)

	SUM with NULLs
	Ignores NULLs
	Ignores NULLs

	String concat
	Treats as empty
	Returns NULL

5.2 Mitigation
Always use coalesce for null-sensitive operations
from pyspark.sql.functions import coalesce, lit

NULL + 5 = 5 (SAS behavior)
df.withColumn('result', coalesce(col('value'), lit(0)) + 5)

String concat with NULL handling
df.withColumn('full_name',
 concat(coalesce(col('first'), lit('')),
 lit(' '),
 coalesce(col('last'), lit(''))))

5.3 Date Precision
1. SAS dates are integers (days since 1/1/1960)
1. SAS datetimes are floats (seconds since 1/1/1960)
1. PySpark uses standard date/timestamp types
1. Always verify date arithmetic matches exactly
Appendix: Document Information
	Document Title
	Edge Case Handling Playbook

	Version
	1.0

	Classification
	Confidential

	Last Updated
	January 2025

Page of
