LLM Output Validation Patterns

LLM OUTPUT
VALIDATION PATTERNS

Automated Quality Checks for AI-Generated Code

Version 1.0 | Confidential

Table of Contents

1. Overview
This document defines the automated validation patterns applied to all LLM-generated code conversions. These checks run before human review to catch obvious issues and provide quality signals.
1.1 Validation Pipeline
LLM Output ──▶ [Parse] ──▶ [Syntax] ──▶ [Semantic] ──▶ [Pattern] ──▶ [Test] ──▶ Score

1.2 Validation Categories
	Category
	Purpose
	Tools

	Structural
	Valid output format
	JSON/XML parser

	Syntactic
	Code compiles
	AST parser, compiler

	Semantic
	Logic correctness
	Static analysis, linters

	Pattern
	Best practices
	Custom rule engine

	Functional
	Behavior matches
	Unit tests, assertions

2. Structural Validation
2.1 Response Format Validation
LLM responses must conform to expected structure:
EXPECTED RESPONSE STRUCTURE:
{
 "converted_code": "string (required)",
 "mapping_notes": ["array of strings (required)"],
 "confidence_score": "integer 0-100 (required)",
 "warnings": ["array of strings (optional)"],
 "test_cases": ["array of strings (optional)"]
}
2.2 Structural Checks
1. JSON/XML well-formedness
1. Required fields present
1. Field types correct
1. Confidence score in valid range
1. Code block properly escaped

3. Syntactic Validation
3.1 Python/PySpark Syntax
import ast

def validate_python_syntax(code_string: str) -> dict:
 """Validate Python code syntax."""
 try:
 ast.parse(code_string)
 return {'valid': True, 'errors': []}
 except SyntaxError as e:
 return {
 'valid': False,
 'errors': [{
 'line': e.lineno,
 'column': e.offset,
 'message': e.msg
 }]
 }

3.2 Import Validation
Verify all imports are resolvable:
ALLOWED_IMPORTS = {
 'pyspark.sql': ['SparkSession', 'DataFrame', 'functions', 'Window'],
 'pyspark.sql.functions': '*', # All functions allowed
 'pyspark.sql.types': '*',
 'pyspark.sql.window': ['Window'],
 'datetime': ['date', 'datetime', 'timedelta'],
 'typing': '*',
}

BLOCKED_IMPORTS = [
 'os.system', # Security risk
 'subprocess', # Security risk
 'eval', # Security risk
]

4. Semantic Validation
4.1 Static Analysis Rules
	Rule
	Severity
	Score Impact

	Undefined variable reference
	ERROR
	-20 points

	Unused variable
	WARNING
	-2 points

	Unused import
	WARNING
	-2 points

	Missing type hints
	INFO
	-1 point

	Missing docstring
	INFO
	-1 point

	Unreachable code
	WARNING
	-5 points

	Possible null reference
	WARNING
	-5 points

	Type mismatch
	ERROR
	-10 points

4.2 PySpark-Specific Rules
1. UDF usage when built-in exists: -5 points
1. collect() on large DataFrame: WARNING flag
1. Missing partitioning on large joins: WARNING flag
1. Deprecated API usage: -3 points
1. Non-deterministic function in groupBy: ERROR

5. Pattern Validation
5.1 Transformation Pattern Library
Compare generated code against known-good patterns:
PATTERN: SAS DATA Step to PySpark DataFrame

Expected structure:
 - Function definition with DataFrame parameter
 - Return statement with chained operations
 - filter() for WHERE clauses
 - withColumn() for assignments
 - when().otherwise() for IF-THEN-ELSE

Anti-patterns to flag:
 - for loops over DataFrame rows
 - collect() followed by Python processing
 - Multiple separate DataFrames instead of chaining

5.2 Healthcare Domain Patterns
1. Member ID format validation (9-11 chars)
1. Date range checks for eligibility spans
1. Amount fields use Decimal type, not Float
1. Status codes match known value sets
1. PHI columns not logged or printed

6. Functional Validation
6.1 Auto-Generated Test Execution
Run the LLM-generated test cases:
def run_generated_tests(code: str, tests: list) -> dict:
 results = {
 'total': len(tests),
 'passed': 0,
 'failed': 0,
 'errors': []
 }

 # Execute each test in isolated environment
 for test in tests:
 try:
 exec(code + test)
 results['passed'] += 1
 except AssertionError as e:
 results['failed'] += 1
 results['errors'].append(str(e))

 return results

6.2 Data Reconciliation Checks
For conversions with sample data available:
1. Row count matches between source and target
1. Aggregate sums match (with tolerance for floating point)
1. Distinct value counts match for key columns
1. Sample record spot-checks pass
Appendix: Document Information
	Document Title
	LLM Output Validation Patterns

	Version
	1.0

	Classification
	Confidential

	Last Updated
	January 2025

Page of
