Prompt Engineering: Informatica to Fabric

PROMPT ENGINEERING
Informatica → Fabric

AI-Powered ETL Migration from Informatica PowerCenter to Microsoft Fabric

Version 1.0 | Confidential


Table of Contents




1. Introduction
This document provides prompt engineering templates for converting Informatica PowerCenter mappings, workflows, and sessions to Microsoft Fabric Data Factory pipelines and Spark notebooks.
1.1 Informatica to Fabric Mapping
	Informatica Component
	Fabric Equivalent
	Complexity

	Mapping
	Notebook or Dataflow Gen2
	Medium

	Workflow
	Data Factory Pipeline
	Low-Medium

	Session
	Pipeline Activity
	Low

	Source Qualifier
	Lakehouse/Warehouse Source
	Low

	Expression Transformation
	PySpark withColumn()
	Medium

	Filter Transformation
	PySpark filter()
	Low

	Joiner Transformation
	PySpark join()
	Medium

	Aggregator Transformation
	PySpark groupBy().agg()
	Medium

	Lookup Transformation
	PySpark join() or broadcast
	Medium

	Router Transformation
	Multiple filter() branches
	Medium

	Stored Procedure
	Stored Proc Activity or Notebook
	Low





2. System Prompt
You are an expert ETL migration engineer with 15+ years of experience in both
Informatica PowerCenter and Microsoft Fabric. You specialize in converting
legacy Informatica mappings to modern Fabric data pipelines and PySpark notebooks.

YOUR EXPERTISE INCLUDES:
- Deep knowledge of Informatica transformations, mappings, workflows, sessions
- Expert-level Microsoft Fabric including Data Factory, Notebooks, Lakehouse
- PySpark DataFrame API for complex transformations
- Healthcare payer domain: Claims, eligibility, provider data

CONVERSION PRINCIPLES:
1. Preserve exact data transformation logic
2. Use PySpark in Fabric Notebooks for complex mappings
3. Use Data Factory for orchestration (replacing workflows)
4. Leverage Lakehouse for staging and persistence
5. Maintain data lineage and documentation



3. Mapping Conversion
3.1 Expression Transformation
Convert the following Informatica Expression transformation to PySpark.

INFORMATICA EXPRESSION FUNCTIONS TO PYSPARK:
- IIF(condition, true_val, false_val) -> when(condition, true_val).otherwise(false_val)
- DECODE(col, val1, res1, val2, res2, default) -> Multiple when().otherwise()
- TO_DATE(str, fmt) -> to_date(str, fmt) [format string differs]
- SUBSTR(str, start, len) -> substring(str, start, len)
- LTRIM/RTRIM(str) -> ltrim()/rtrim()
- NVL(col, default) -> coalesce(col, default)
- SYSDATE -> current_timestamp()
- LPAD/RPAD(str, len, pad) -> lpad()/rpad()

3.2 Aggregator Transformation
Convert the following Informatica Aggregator transformation to PySpark.

KEY MAPPINGS:
- Group By ports -> .groupBy() columns
- SUM(col) -> F.sum('col')
- COUNT(*) -> F.count('*')
- AVG(col) -> F.avg('col')
- MIN/MAX(col) -> F.min()/F.max()
- FIRST/LAST(col, group_by) -> first()/last() with window

SORTED INPUT: If Informatica uses sorted input for performance,
consider adding .repartition() before groupBy in PySpark.



4. Lookup Transformation
4.1 Standard Lookup
Convert the following Informatica Lookup transformation to PySpark.

LOOKUP TYPES:
1. Connected Lookup (returns columns) -> left join
2. Unconnected Lookup (called via :LKP) -> broadcast join or UDF
3. Dynamic Lookup (insert/update) -> merge operation

PYSPARK PATTERN:
  lookup_df = spark.read.table('lookup_table')
  result = main_df.join(
      broadcast(lookup_df),  # Use broadcast for small lookups
      on=[join_conditions],
      how='left'
  )

5. Workflow Conversion
5.1 Workflow to Pipeline
Informatica Workflows map to Fabric Data Factory Pipelines:
	Informatica Workflow
	Fabric Pipeline

	Start Task
	Pipeline trigger/schedule

	Session Task
	Notebook Activity

	Decision Task
	If Condition Activity

	Email Task
	Web Activity (email API)

	Command Task
	Stored Procedure Activity

	Link Conditions
	Activity dependencies



Appendix: Document Information
	Document Title
	Prompt Engineering: Informatica to Fabric

	Version
	1.0

	Classification
	Confidential

	Last Updated
	January 2025


Page  of 
