Prompt Engineering: SAS to PySpark

PROMPT ENGINEERING
SAS → PySpark

Comprehensive Prompt Templates and Patterns for
AI-Powered SAS to PySpark Code Conversion

━━━

DATA Step • PROC SQL • Macros • PROC MEANS/FREQ • Formats

Version 1.0 | Confidential

Table of Contents

1. Introduction
This document provides comprehensive prompt engineering templates for converting SAS code to PySpark. Each template is optimized for specific SAS constructs and has been refined through extensive testing.
1.1 Prompt Design Principles
1. Specificity: Clearly define the exact SAS construct being converted
1. Context: Provide healthcare domain context to improve accuracy
1. Examples: Include few-shot examples for complex patterns
1. Structure: Request structured output for consistent parsing
1. Validation: Include self-verification instructions
1.2 SAS to PySpark Mapping Overview
	SAS Construct
	PySpark Equivalent
	Complexity

	DATA Step
	DataFrame transformations
	Medium-High

	PROC SQL
	spark.sql() or DataFrame API
	Low-Medium

	Macros
	Python functions + config
	High

	PROC MEANS
	DataFrame.agg()
	Low

	PROC FREQ
	groupBy().count()
	Low

	PROC SORT
	orderBy()
	Low

	Formats/Informats
	UDFs or when().otherwise()
	Medium

	Arrays
	Array functions or explode()
	Medium-High

2. System Prompt Template
The system prompt establishes the LLM role, expertise, and constraints. This prompt remains constant across all SAS conversions.
2.1 Core System Prompt
You are an expert code conversion engineer with 15+ years of experience in both SAS
and PySpark/Spark SQL. You specialize in migrating legacy SAS programs to modern
PySpark for healthcare payer organizations.

YOUR EXPERTISE INCLUDES:
- Deep knowledge of SAS DATA steps, PROC SQL, macros, formats, and advanced techniques
- Expert-level PySpark including DataFrame API, Spark SQL, UDFs, and window functions
- Healthcare payer domain: Claims processing, member eligibility, provider networks
- Performance optimization for large-scale data processing

CONVERSION PRINCIPLES:
1. Preserve exact business logic - output must be functionally equivalent
2. Use PySpark DataFrame API as primary approach (more performant than SQL strings)
3. Avoid UDFs when built-in functions exist (UDFs prevent optimization)
4. Maintain readability with clear variable names and comments
5. Include type hints for all function parameters and returns
6. Generate docstrings explaining the transformation logic

OUTPUT FORMAT:
Always structure your response as:
1. <converted_code>: The PySpark code
2. <mapping_notes>: Line-by-line explanation of transformations
3. <confidence_score>: 0-100 rating of conversion accuracy
4. <warnings>: Any concerns or areas needing human review
5. <test_cases>: Suggested test scenarios

3. DATA Step Conversion
3.1 Simple DATA Step Prompt
Convert the following SAS DATA step to PySpark DataFrame operations.

CONTEXT:
- Source table: {source_table_name} (contains {table_description})
- Business purpose: {business_purpose}
- Domain: Healthcare Payer - {specific_domain}

REQUIREMENTS:
- Use DataFrame API (not spark.sql strings)
- Chain operations fluently where appropriate
- Use withColumn() for new/modified columns
- Use filter() for WHERE conditions
- Preserve column order from original

SAS CODE:
```sas
{sas_code}
```

3.1.1 Example Conversion
SAS Input:
DATA claims_filtered;
 SET raw_claims;
 WHERE claim_status = 'PAID' AND claim_amount > 0;
 paid_date_formatted = PUT(paid_date, DATE9.);
 tax_amount = claim_amount * 0.08;
 IF member_age >= 65 THEN age_category = 'SENIOR';
 ELSE IF member_age >= 18 THEN age_category = 'ADULT';
 ELSE age_category = 'MINOR';
RUN;
Expected PySpark Output:
from pyspark.sql import functions as F
from pyspark.sql.functions import col, when, lit, date_format

def transform_claims_filtered(raw_claims_df):
 """
 Filter and transform claims data.
 Equivalent to SAS DATA claims_filtered.
 """
 return (
 raw_claims_df
 .filter((col('claim_status') == 'PAID') & (col('claim_amount') > 0))
 .withColumn('paid_date_formatted', date_format(col('paid_date'), 'ddMMMyyyy'))
 .withColumn('tax_amount', col('claim_amount') * 0.08)
 .withColumn('age_category',
 when(col('member_age') >= 65, lit('SENIOR'))
 .when(col('member_age') >= 18, lit('ADULT'))
 .otherwise(lit('MINOR')))
)

3.2 DATA Step with BY Processing
SAS BY-group processing requires window functions or groupBy in PySpark.
Convert the following SAS DATA step with BY-group processing to PySpark.

KEY SAS CONCEPTS TO HANDLE:
- FIRST.variable: First record in BY group - use Window with row_number
- LAST.variable: Last record in BY group - use Window with row_number desc
- RETAIN: Carry values across rows - use Window lag() or running aggregations
- BY variable order: Must match ORDER BY in window specification

PYSPARK APPROACH:
- Use Window.partitionBy() for BY groups
- Use row_number() to identify FIRST/LAST
- Use lag()/lead() for RETAIN-like behavior

3.2.1 Example: FIRST./LAST. Processing
SAS Input:
DATA member_spans;
 SET eligibility;
 BY member_id eff_date;
 IF FIRST.member_id THEN span_number = 0;
 span_number + 1;
 IF LAST.member_id THEN total_spans = span_number;
RUN;
Expected PySpark Output:
from pyspark.sql.window import Window
from pyspark.sql.functions import row_number, count, col

def transform_member_spans(eligibility_df):
 # Define window for BY-group processing
 member_window = Window.partitionBy('member_id').orderBy('eff_date')
 member_full = Window.partitionBy('member_id')

 return (
 eligibility_df
 .withColumn('span_number', row_number().over(member_window))
 .withColumn('total_spans', count('*').over(member_full))
)

4. PROC SQL Conversion
4.1 Standard PROC SQL Prompt
Convert the following SAS PROC SQL to PySpark.

CONVERSION OPTIONS:
1. spark.sql() - Use when SQL is complex or for readability
2. DataFrame API - Use for better optimization, type safety

DEFAULT: Use DataFrame API unless:
- Query has complex subqueries
- Query uses CTEs (WITH clause)
- Query has UNION/INTERSECT/EXCEPT

SAS-SPECIFIC SQL TO HANDLE:
- CALCULATED keyword: Reference alias in same SELECT
- COALESCE with multiple args: Same in Spark
- GROUP BY with aliases: Use column position or repeat expression

4.1.1 Example: Complex Aggregation
SAS Input:
PROC SQL;
 CREATE TABLE claim_summary AS
 SELECT member_id, claim_type,
 COUNT(*) AS claim_count,
 SUM(claim_amount) AS total_amount,
 CALCULATED total_amount / CALCULATED claim_count AS avg_amount
 FROM claims
 WHERE claim_status = 'PAID'
 GROUP BY member_id, claim_type
 HAVING CALCULATED claim_count >= 5;
QUIT;
Expected PySpark Output:
from pyspark.sql.functions import count, sum as spark_sum, col

def create_claim_summary(claims_df):
 return (
 claims_df
 .filter(col('claim_status') == 'PAID')
 .groupBy('member_id', 'claim_type')
 .agg(
 count('*').alias('claim_count'),
 spark_sum('claim_amount').alias('total_amount')
)
 .withColumn('avg_amount', col('total_amount') / col('claim_count'))
 .filter(col('claim_count') >= 5)
)

5. Macro Conversion
5.1 Macro Design Philosophy
SAS macros serve multiple purposes that map to different Python patterns:
	SAS Macro Use
	Python Pattern
	When to Use

	Parameter substitution
	Function parameters
	Simple value injection

	Code generation
	Functions returning code
	Dynamic column lists

	Control flow
	Python control flow
	Conditional logic

	Configuration
	Config files/env vars
	Environment-specific

	Looping over values
	Python loops
	Iterative processing

5.2 Macro Prompt Template
Convert the following SAS macro to Python/PySpark.

MACRO ANALYSIS REQUIRED:
1. Identify macro parameters and their purposes
2. Determine if macro generates SQL, DATA step, or mixed
3. Identify macro variables resolved at compile time vs runtime
4. Check for %IF/%THEN/%ELSE logic
5. Check for %DO loops

PYTHON PATTERN SELECTION:
- Simple substitution: Function with parameters
- Complex logic: Class with methods
- Configuration: Config dict or dataclass
- Code generation: Function returning DataFrame operations

IMPORTANT:
- Preserve all business logic exactly
- Document parameter purposes in docstring
- Include type hints
- Provide example usage

6. Statistical Procedures
6.1 PROC MEANS Mapping
	SAS Statistic
	PySpark Function
	Notes

	N
	count(col)
	Non-null count

	NMISS
	count(*) - count(col)
	Null count

	MEAN
	avg(col) or mean(col)
	Average

	STD
	stddev(col)
	Standard deviation

	MIN/MAX
	min(col)/max(col)
	Direct mapping

	SUM
	sum(col)
	Direct mapping

	MEDIAN
	percentile_approx(col, 0.5)
	Approximate

6.2 PROC FREQ Mapping
	SAS Pattern
	PySpark Equivalent

	TABLES var1;
	df.groupBy('var1').count()

	TABLES var1*var2;
	df.groupBy('var1','var2').count().pivot('var2')

	TABLES var1 / NOCUM;
	Add percent column using window

7. Healthcare Domain Context
Include this domain context section when converting healthcare payer code:
HEALTHCARE PAYER DOMAIN CONTEXT:

TERMINOLOGY:
- Member/Subscriber: Individual enrolled in health plan
- Provider: Healthcare facility, physician, or supplier
- Claim: Request for payment for healthcare services
- Eligibility: Member's coverage status and benefits
- LOB (Line of Business): Medicaid, Medicare, Commercial, CHIP
- ICD-10: Diagnosis codes
- CPT/HCPCS: Procedure codes
- NPI: National Provider Identifier

COMMON DATA PATTERNS:
- Member ID formats: Usually 9-11 characters
- Date handling: Eligibility spans, service dates, paid dates
- Amount fields: Billed, allowed, paid, copay, coinsurance
- Status codes: Claim status (PEND, PAID, DENY)

COMPLIANCE CONSIDERATIONS:
- HIPAA: Never log PHI, mask SSN/DOB in non-prod
- CMS Reporting: Specific date and amount precision
- State Medicaid: State-specific code sets

8. Edge Case Handling
8.1 Null/Missing Value Handling
	SAS Behavior
	PySpark Behavior
	Handling

	Missing numeric = .
	Null
	Direct mapping

	Missing char = ''
	Null OR ''
	Use coalesce/nullif

	. in comparison = false
	Null propagates
	Use isNull() check

	. sorts first
	Null sorts last
	Use nullsFirst()

8.2 Date Function Mapping
	SAS Function
	PySpark Function
	Notes

	INTNX('MONTH',dt,0,'E')
	last_day(dt)
	End of month

	INTNX('MONTH',dt,0,'B')
	trunc(dt,'month')
	Begin of month

	INTCK('DAY',d1,d2)
	datediff(d2,d1)
	Args reversed

	DATEPART(datetime)
	to_date(datetime)
	Extract date

	MDY(m,d,y)
	make_date(y,m,d)
	Different order

Appendix A: Quick Reference Card
	SAS
	PySpark

	DATA new; SET old;
	new_df = old_df.select(...)

	WHERE condition
	.filter(condition)

	new_col = expression
	.withColumn('new_col', expr)

	IF-THEN-ELSE
	when().otherwise()

	PROC SORT BY vars
	.orderBy(vars)

	MERGE BY key
	.join(other, on='key')

	BY var (FIRST./LAST.)
	Window + row_number()

	PROC MEANS
	.groupBy().agg()

	%MACRO name(params)
	def name(params):

Appendix B: Document Information
	Document Title
	Prompt Engineering: SAS to PySpark

	Version
	1.0

	Classification
	Confidential - Internal Use

	Last Updated
	January 2025

Page of
