PySpark Architecture Deep Dive

SPARK ARCHITECTURE
DEEP DIVE

Driver • Executors • DAG • Catalyst • Tungsten • Shuffle

Apache Spark 3.x | Platform Agnostic

Version 1.0

Table of Contents

1. Spark Cluster Architecture
Apache Spark uses a master-worker architecture with a Driver coordinating distributed execution across multiple Executors. Understanding this architecture is fundamental to writing efficient Spark applications.
1.1 Cluster Components
	Component
	Responsibility

	Driver
	Runs main(), creates SparkContext, builds DAG, schedules tasks, collects results

	Cluster Manager
	Allocates resources (YARN, Kubernetes, Standalone, Mesos)

	Executor
	Runs tasks, stores data in memory/disk, reports status to Driver

	Task
	Smallest unit of work, processes one partition

1.2 Execution Flow
User Application → SparkContext → DAG Scheduler → Task Scheduler → Executors

1. Application submits job via SparkContext
2. DAG Scheduler builds execution graph from transformations
3. DAG splits into Stages at shuffle boundaries
4. Task Scheduler assigns Tasks to Executors
5. Executors run Tasks and return results
6. Driver aggregates results and returns to user
💡 The Driver is a single point of failure. If it crashes, the entire application fails. Keep Driver memory reasonable and avoid collecting large datasets.

2. DAG and Execution Model
Spark builds a Directed Acyclic Graph (DAG) of transformations. This lazy evaluation model enables powerful optimizations before any computation occurs.
2.1 Transformations vs Actions
	Type
	Examples
	Behavior

	Transformations
	map, filter, select, join, groupBy
	Lazy - builds DAG, no execution

	Actions
	count, collect, write, show, take
	Triggers execution of DAG

2.2 Narrow vs Wide Transformations
	Type
	Examples
	Impact

	Narrow
	map, filter, select, union
	No shuffle, pipelined, fast

	Wide
	groupBy, join, repartition, distinct
	Requires shuffle, stage boundary

2.3 Stages and Tasks
Job → Stages → Tasks

Job: Triggered by each Action
Stage: Sequence of narrow transforms, ends at shuffle
Task: One partition processed by one Stage

Tasks in a Stage can run in parallel across Executors
💡 Minimize wide transformations to reduce shuffles. Each shuffle creates a new Stage and involves disk I/O and network transfer.

3. Catalyst Optimizer
Catalyst is Spark's query optimizer that transforms logical plans into optimized physical execution plans. It applies rule-based and cost-based optimizations.
3.1 Optimization Phases
1. 1. Parsing: SQL/DataFrame → Unresolved Logical Plan
1. 2. Analysis: Resolve columns, tables → Resolved Logical Plan
1. 3. Logical Optimization: Apply rules (predicate pushdown, column pruning)
1. 4. Physical Planning: Generate candidate physical plans
1. 5. Code Generation: Produce optimized bytecode (Tungsten)
3.2 Key Optimizations
	Optimization
	Description

	Predicate Pushdown
	Filters pushed to data source level

	Column Pruning
	Only required columns are read

	Constant Folding
	Evaluate constant expressions at compile time

	Join Reordering
	Optimize join order based on statistics

	Broadcast Join
	Broadcast small tables to avoid shuffle

3.3 Viewing the Query Plan
View logical plan
df.explain(True)

View formatted physical plan
df.explain('formatted')

View with cost statistics (requires stats collection)
df.explain('cost')

4. Tungsten Engine
Tungsten is Spark's execution engine focused on CPU and memory efficiency. It provides substantial performance improvements over traditional JVM-based processing.
4.1 Tungsten Features
1. Whole-Stage Code Generation: Compiles query plan to optimized Java bytecode
1. Binary Memory Management: Off-heap memory, avoids GC overhead
1. Cache-Aware Computation: Optimizes for CPU cache locality
1. Vectorized Processing: Processes data in batches (columnar)
1. Unsafe API: Direct memory access without serialization
4.2 Whole-Stage Code Generation
Check if whole-stage codegen is applied
df.explain()

Look for 'WholeStageCodegen' in plan:
*(1) Project [id#0, name#1]
+- *(1) Filter (id#0 > 100)
+- *(1) Scan parquet ← asterisk (*) indicates codegen
💡 Whole-stage code generation fuses multiple operators into a single optimized function, eliminating virtual function calls and intermediate data materialization.

5. Shuffle Architecture
Shuffle is the process of redistributing data across partitions. It's one of the most expensive operations in Spark and a primary target for optimization.
5.1 Shuffle Process
Map Stage → Shuffle Write → Shuffle Files → Shuffle Read → Reduce Stage

1. Map tasks compute output and write to local shuffle files
2. Each map creates one file per reducer (or uses sort-based shuffle)
3. Shuffle files stored on local disk
4. Reduce tasks fetch relevant partitions from all map outputs
5. Data is sorted/merged if required by operation
5.2 Shuffle Managers
	Manager
	Description

	Sort-Based (default)
	Single shuffle file per map task, sorted, efficient for large shuffles

	Tungsten-Sort
	Extends sort-based with off-heap memory, binary processing

5.3 Adaptive Query Execution (AQE)
Enable AQE (default in Spark 3.2+)
spark.conf.set('spark.sql.adaptive.enabled', 'true')

AQE optimizations:
1. Coalesce shuffle partitions automatically
2. Convert sort-merge join to broadcast join at runtime
3. Optimize skewed joins dynamically
💡 AQE re-optimizes the query plan during execution based on actual runtime statistics, making it especially valuable for unpredictable data distributions.

6. Key Takeaways
6.1 Architecture Summary
1. Driver coordinates, Executors compute — keep Driver lean
1. DAG enables lazy evaluation and optimization
1. Stages are bounded by shuffles — minimize wide transforms
1. Catalyst optimizes logical plans automatically
1. Tungsten maximizes CPU/memory efficiency
1. Shuffle is expensive — design to minimize data movement
6.2 Design Implications
	Principle
	Application

	Data Locality
	Co-locate processing with data when possible

	Partition Alignment
	Pre-partition data to avoid shuffle on joins

	Column Awareness
	Select only needed columns, use columnar formats

	Broadcast Small Tables
	Avoid shuffle for dimension tables

Appendix: Document Information
	Document Title
	Spark Architecture Deep Dive

	Version
	1.0

	Applies To
	Apache Spark 3.x (All Platforms)

Page of
