Execution Model & DAG Optimization

EXECUTION MODEL &
DAG OPTIMIZATION

Lazy Evaluation • Stage Boundaries • Pipeline Optimization

Apache Spark 3.x | Platform Agnostic

Version 1.0

Table of Contents

1. Lazy Evaluation
Spark uses lazy evaluation — transformations build a logical plan but don't execute until an action is called. This enables powerful optimizations.
1.1 How It Works
These are transformations - no execution yet
df = spark.read.parquet('data/') # Lazy
df = df.filter(col('amount') > 100) # Lazy
df = df.select('id', 'amount') # Lazy
df = df.groupBy('id').sum('amount') # Lazy

This is an action - triggers execution of ALL above
df.show() # Action!
1.2 Benefits of Lazy Evaluation
1. Catalyst can optimize entire query before execution
1. Predicate pushdown moves filters to data source
1. Column pruning reads only needed columns
1. Constant folding evaluates expressions at compile time
1. Operations can be pipelined within stages
💡 Lazy evaluation means errors in transformations may not appear until an action is called. Test early and often.

2. Stage Boundaries
Spark divides the DAG into stages at shuffle boundaries. Understanding stages is key to optimizing execution.
2.1 What Creates a Stage Boundary
	Creates New Stage (Wide)
	Same Stage (Narrow)

	groupBy, groupByKey
	map, flatMap

	reduceByKey, aggregateByKey
	filter, where

	join (non-broadcast)
	select, withColumn

	repartition
	coalesce (reduce only)

	distinct
	union, unionAll

	sort, orderBy
	broadcast join

2.2 Visualizing Stages
View the execution plan
df.explain(True)

Example output showing stages:
== Physical Plan ==
*(2) HashAggregate(keys=[region], functions=[sum(amount)])
+- Exchange hashpartitioning(region, 200) ← SHUFFLE (Stage 2)
 +- *(1) HashAggregate(keys=[region], functions=[partial_sum])
 +- *(1) Filter (amount > 100)
 +- *(1) Scan parquet ← Stage 1
⚠️ Each shuffle writes data to disk and transfers across the network. Minimize shuffles for better performance.

3. DAG Optimization Patterns
3.1 Filter Early
❌ Bad: Filter after expensive operations
df.join(other, 'key').groupBy('region').sum().filter('total > 1000')

✅ Good: Filter as early as possible
df.filter('amount > 0').join(other.filter('active'), 'key').groupBy('region').sum()
3.2 Select Only Needed Columns
❌ Bad: Carry all columns through pipeline
df.join(other, 'key').groupBy('region').agg(sum('amount'))

✅ Good: Project early
df.select('key', 'region', 'amount').join(other.select('key'), 'key').groupBy('region').agg(sum('amount'))
3.3 Reduce Before Shuffle
❌ Bad: Shuffle all data then aggregate
df.groupBy('key').agg(sum('value')) # Full shuffle

✅ Good: Use reduceByKey pattern (pre-aggregates locally)
For RDDs: rdd.reduceByKey(lambda a,b: a+b)
For DataFrames: Spark automatically does partial aggregation
But ensure you're not preventing it with complex UDFs

4. Avoiding Unnecessary Shuffles
4.1 Pre-Partition Data
If joining repeatedly on same key, pre-partition
df1 = df1.repartition(200, 'join_key')
df2 = df2.repartition(200, 'join_key')

Subsequent joins on 'join_key' avoid shuffle
result = df1.join(df2, 'join_key') # No shuffle if same partitioner
4.2 Use Broadcast Joins
from pyspark.sql.functions import broadcast

Small table (< ~100 MB) - broadcast to avoid shuffle
result = large_df.join(broadcast(small_df), 'key')

Auto-broadcast threshold (default 10 MB)
spark.conf.set('spark.sql.autoBroadcastJoinThreshold', 100 * 1024 * 1024)
4.3 Coalesce vs Repartition
Coalesce: Reduces partitions WITHOUT shuffle
df.coalesce(10) # Narrow transformation

Repartition: Full shuffle, can increase or decrease
df.repartition(100) # Shuffle to 100 partitions
df.repartition(100, 'key') # Shuffle by key to 100 partitions
💡 Use coalesce when reducing partitions (e.g., before write). Use repartition when you need even distribution or specific partitioning.

5. Pipelining and Fusion
5.1 Operation Pipelining
These operations are pipelined in a single stage:
df.filter(col('amount') > 0) # Step 1
 .select('id', 'amount') # Step 2
 .withColumn('tax', col('amount') * 0.1) # Step 3
 .filter(col('tax') > 10) # Step 4

All 4 steps execute together per partition
No intermediate data materialization
5.2 Whole-Stage Code Generation
Spark fuses operations into optimized Java bytecode
Look for asterisk (*) in explain output:

*(1) Project [id, amount, (amount * 0.1) AS tax]
+- *(1) Filter ((amount > 0) AND (tax > 10))
 +- *(1) Scan parquet

The (1) indicates all operations are in one code-generated stage
5.3 Breaking Pipelining
1. Shuffles always break pipelining
1. Cache/persist forces materialization
1. Some complex UDFs may break codegen
1. Checkpoint forces materialization to storage

6. Optimization Checklist
6.1 DAG Best Practices
1. ☐ Filter data as early as possible
1. ☐ Select only required columns early
1. ☐ Use broadcast joins for small tables
1. ☐ Pre-partition data if joining multiple times
1. ☐ Use coalesce (not repartition) to reduce partitions
1. ☐ Avoid unnecessary distinct/orderBy
1. ☐ Check explain() plan for unexpected shuffles
1. ☐ Use AQE for dynamic optimization
6.2 Reading the Query Plan
	Plan Element
	What to Look For

	Exchange
	Shuffle operation - try to minimize

	BroadcastExchange
	Broadcast - good for small tables

	*(n) prefix
	Whole-stage codegen - good

	Filter pushed down
	Predicate pushdown - good

	Scan columns
	Column pruning - fewer = better

Appendix: Document Information
	Document Title
	Execution Model & DAG Optimization

	Version
	1.0

	Applies To
	Apache Spark 3.x (All Platforms)

Page of
