PySpark Memory Model & Tuning

SPARK MEMORY MODEL
& TUNING GUIDE

Unified Memory • Executor Memory • GC Tuning • OOM Prevention

Apache Spark 3.x | Platform Agnostic

Version 1.0

Table of Contents

1. Unified Memory Model
Spark 1.6+ uses a Unified Memory Manager that allows flexible sharing between execution and storage. Understanding this model is critical for preventing OOM errors and optimizing performance.
1.1 Memory Regions
Total Executor Memory
├── Reserved Memory (300 MB fixed)
└── Usable Memory = (Total - 300MB) × spark.memory.fraction (0.6)
 ├── Execution Memory (shuffles, joins, sorts, aggregations)
 └── Storage Memory (cached RDDs, broadcast variables)

Remaining (1 - 0.6 = 0.4) = User Memory
└── User Memory: UDFs, internal metadata, object overhead
1.2 Memory Configuration
	Parameter
	Default
	Description

	spark.executor.memory
	1g
	Total executor heap memory

	spark.memory.fraction
	0.6
	Fraction for execution + storage

	spark.memory.storageFraction
	0.5
	Fraction of spark.memory.fraction for storage

	spark.executor.memoryOverhead
	10%
	Off-heap memory for JVM overhead

💡 Unified Memory allows execution to borrow from storage (and vice versa) when the other is free, but execution can evict storage if needed.

2. Memory Calculation
2.1 Example Calculation
Given: spark.executor.memory = 8g
 spark.memory.fraction = 0.6
 spark.memory.storageFraction = 0.5

Reserved Memory = 300 MB (fixed)
Usable Memory = (8192 - 300) × 0.6 = 4735 MB
├── Execution Pool = 4735 × 0.5 = 2367 MB
└── Storage Pool = 4735 × 0.5 = 2367 MB

User Memory = (8192 - 300) × 0.4 = 3157 MB
Total: 300 + 4735 + 3157 = 8192 MB ✓
2.2 Memory Overhead
Off-heap memory for containers (YARN/K8s)
spark.executor.memoryOverhead = max(384 MB, 0.10 × executor.memory)

For 8g executor:
memoryOverhead = max(384, 0.10 × 8192) = 819 MB

Total container memory = 8g + 819 MB ≈ 9 GB
⚠️ Container memory = executor.memory + memoryOverhead. If the container exceeds this, YARN/K8s will kill the executor.

3. Garbage Collection Tuning
Java GC can significantly impact Spark performance. Long GC pauses cause tasks to stall and can lead to executor timeouts.
3.1 GC Options
	GC Type
	Recommendation

	G1GC
	Best for large heaps (>4GB). Default in Java 9+. Recommended.

	ParallelGC
	Good throughput, but long pauses. Avoid for interactive workloads.

	ZGC
	Ultra-low latency (<10ms). Java 15+. Good for streaming.

3.2 G1GC Configuration
Recommended G1GC settings
spark.executor.extraJavaOptions=
 -XX:+UseG1GC
 -XX:InitiatingHeapOccupancyPercent=35
 -XX:G1HeapRegionSize=16m
 -XX:MaxGCPauseMillis=200
 -XX:+ParallelRefProcEnabled
3.3 Monitoring GC
Enable GC logging
spark.executor.extraJavaOptions=
 -Xlog:gc*:file=/tmp/gc.log:time,uptime,level,tags

Key metrics to watch:
- GC pause time (should be < 200ms)
- GC frequency (too frequent = memory pressure)
- Full GC count (should be rare or zero)

4. OOM Prevention
4.1 Common OOM Causes
	Cause
	Solution

	Large broadcast variables
	Keep broadcasts < 100MB, increase driver memory

	Collect on large dataset
	Avoid collect(), use take() or write to storage

	Data skew in joins
	Salting, AQE skew join optimization

	Too many partitions cached
	Reduce cache size, use DISK_ONLY storage level

	UDF memory leaks
	Avoid accumulating data in UDFs

	Shuffle spill
	Increase spark.memory.fraction or executor memory

4.2 Memory-Safe Patterns
❌ Bad: Collecting large data to driver
all_data = df.collect() # OOM risk!

✅ Good: Process in partitions
df.write.parquet('output/')

❌ Bad: Large broadcast
large_lookup = spark.read.parquet('huge_lookup/')
broadcast(large_lookup) # OOM risk!

✅ Good: Filter before broadcast
small_lookup = large_lookup.filter(col('active') == True)
broadcast(small_lookup)

5. Off-Heap Memory
5.1 Off-Heap Configuration
Enable off-heap memory
spark.memory.offHeap.enabled = true
spark.memory.offHeap.size = 2g

Benefits:
- Avoids GC for cached data
- Better for large aggregations
- Reduces JVM heap pressure
5.2 When to Use Off-Heap
1. Large cached datasets causing GC pauses
1. Heavy shuffle operations
1. Memory-intensive aggregations
1. When GC tuning has been exhausted
⚠️ Off-heap memory is not tracked by JVM. Monitor container memory usage to prevent OOM kills.

6. Tuning Checklist
6.1 Memory Sizing Guidelines
	Workload Type
	Recommendation

	ETL / Batch
	4-8 GB per executor, more executors

	Interactive / Ad-hoc
	8-16 GB per executor, fewer executors

	ML Training
	16-32 GB per executor, may need off-heap

	Streaming
	2-4 GB per executor, stable memory profile

6.2 Quick Reference
1. ☐ Set executor memory based on workload type
1. ☐ Configure memoryOverhead (10-15% of executor memory)
1. ☐ Use G1GC for heaps > 4GB
1. ☐ Monitor GC pauses in Spark UI
1. ☐ Avoid collect() on large datasets
1. ☐ Filter data before broadcasting
1. ☐ Consider off-heap for cache-heavy workloads

Appendix: Document Information
	Document Title
	Spark Memory Model & Tuning Guide

	Version
	1.0

	Applies To
	Apache Spark 3.x (All Platforms)

Page of
