PySpark Coding Standards

PYSPARK CODING
STANDARDS

Naming • Structure • Imports • Type Hints • Documentation

Apache Spark 3.x | Platform Agnostic

Version 1.0

Table of Contents

1. Naming Conventions
1.1 Variables and Functions
Variables: snake_case
customer_df = spark.read.parquet('customers/')
total_amount = df.agg(sum('amount')).collect()[0][0]

Functions: snake_case with verb prefix
def calculate_total_revenue(df: DataFrame) -> float:
 ...

def filter_active_customers(df: DataFrame) -> DataFrame:
 ...

Boolean variables: use is_, has_, can_, should_
is_valid = True
has_null_values = df.filter(col('id').isNull()).count() > 0
should_broadcast = small_df.count() < 100000
1.2 DataFrames and Columns
DataFrames: descriptive name with _df suffix
raw_claims_df = spark.read.parquet('bronze/claims/')
validated_claims_df = apply_validation_rules(raw_claims_df)
aggregated_claims_df = aggregate_by_region(validated_claims_df)

Columns: snake_case, avoid abbreviations
❌ Bad: cust_id, amt, dt
✅ Good: customer_id, amount, transaction_date
1.3 Constants and Configs
Constants: UPPER_SNAKE_CASE
MAX_PARTITIONS = 200
DEFAULT_DATE_FORMAT = 'yyyy-MM-dd'
BRONZE_PATH = 'abfss://lake@storage.dfs.core.windows.net/bronze/'

Config dictionaries
SPARK_CONFIG = {
 'spark.sql.shuffle.partitions': '200',
 'spark.sql.adaptive.enabled': 'true'
}

2. Code Structure
2.1 Standard Module Layout
"""
Module: customer_transformations.py
Purpose: Customer data transformation functions
"""

1. Standard library imports
from datetime import datetime
from typing import List, Optional

2. Third-party imports
from pyspark.sql import DataFrame, SparkSession
from pyspark.sql.functions import col, when, lit, sum, count
from pyspark.sql.types import StructType, StringType

3. Local imports
from utils.logging import get_logger
from config.settings import SPARK_CONFIG

4. Constants
CUSTOMER_SCHEMA = StructType([...])

5. Functions (ordered by usage flow)
def read_customers(spark: SparkSession, path: str) -> DataFrame:
 ...

def transform_customers(df: DataFrame) -> DataFrame:
 ...

6. Main execution (if script)
if __name__ == '__main__':
 main()
2.2 Function Structure
def process_claims(
 df: DataFrame,
 start_date: str,
 end_date: str,
 include_denied: bool = False
) -> DataFrame:
 """
 Process claims within date range.

 Args:
 df: Input claims DataFrame
 start_date: Start date (yyyy-MM-dd)
 end_date: End date (yyyy-MM-dd)
 include_denied: Whether to include denied claims

 Returns:
 Processed DataFrame with validated claims
 """
 # Filter by date range
 filtered_df = df.filter(
 (col('claim_date') >= start_date) &
 (col('claim_date') <= end_date)
)

 # Apply status filter
 if not include_denied:
 filtered_df = filtered_df.filter(col('status') != 'DENIED')

 return filtered_df

3. Import Best Practices
3.1 Recommended Imports
Import specific functions (preferred)
from pyspark.sql.functions import (
 col, lit, when, coalesce,
 sum, count, avg, max, min,
 to_date, date_format, datediff,
 trim, upper, lower, concat,
 row_number, rank, dense_rank
)

Import with alias for clarity
from pyspark.sql import functions as F
from pyspark.sql import types as T
from pyspark.sql.window import Window

Usage with alias
df = df.withColumn('amount', F.col('amount').cast(T.DecimalType(18,2)))
window = Window.partitionBy('customer_id').orderBy(F.desc('date'))
3.2 Imports to Avoid
❌ Avoid wildcard imports
from pyspark.sql.functions import * # Pollutes namespace

❌ Avoid shadowing built-ins
from pyspark.sql.functions import sum, max, min # Shadows Python built-ins

✅ Use alias instead
from pyspark.sql.functions import sum as spark_sum
from pyspark.sql.functions import max as spark_max

4. Type Hints
4.1 Basic Type Hints
from typing import List, Dict, Optional, Tuple, Union
from pyspark.sql import DataFrame, SparkSession, Column

def read_data(
 spark: SparkSession,
 path: str,
 format: str = 'parquet'
) -> DataFrame:
 """Read data from path."""
 return spark.read.format(format).load(path)

def get_column_names(df: DataFrame) -> List[str]:
 """Get list of column names."""
 return df.columns

def find_record(df: DataFrame, id: str) -> Optional[Dict]:
 """Find record by ID, returns None if not found."""
 rows = df.filter(col('id') == id).collect()
 return rows[0].asDict() if rows else None
4.2 Complex Types
from typing import Callable

Function that takes a column transformation
def apply_transformation(
 df: DataFrame,
 column: str,
 transform: Callable[[Column], Column]
) -> DataFrame:
 return df.withColumn(column, transform(col(column)))

Usage
result = apply_transformation(
 df, 'name',
 lambda c: upper(trim(c))
)

5. Documentation
5.1 Docstring Standards
def calculate_metrics(
 claims_df: DataFrame,
 grouping_cols: List[str],
 date_col: str = 'service_date'
) -> DataFrame:
 """
 Calculate aggregate metrics for claims data.

 Computes total amount, claim count, and average amount
 grouped by the specified columns.

 Args:
 claims_df: DataFrame containing claims data with columns
 'claim_id', 'amount', and the specified date column
 grouping_cols: Columns to group by (e.g., ['region', 'lob'])
 date_col: Name of the date column (default: 'service_date')

 Returns:
 DataFrame with columns: grouping_cols +
 ['total_amount', 'claim_count', 'avg_amount']

 Raises:
 ValueError: If required columns are missing

 Example:
 >>> metrics = calculate_metrics(claims, ['region'], 'claim_date')
 >>> metrics.show()
 """
 ...

6. Code Quality Checklist
6.1 Standards Summary
	Element
	Convention

	Variables
	snake_case: customer_df, total_amount

	Functions
	snake_case with verb: calculate_total(), filter_active()

	Constants
	UPPER_SNAKE: MAX_PARTITIONS, DEFAULT_PATH

	Classes
	PascalCase: CustomerTransformer, DataValidator

	DataFrames
	Descriptive with _df suffix: raw_claims_df

	Columns
	snake_case, no abbreviations: customer_id, not cust_id

6.2 Review Checklist
1. ☐ All functions have type hints
1. ☐ All functions have docstrings
1. ☐ No wildcard imports
1. ☐ Constants are UPPER_SNAKE_CASE
1. ☐ DataFrames use _df suffix
1. ☐ Column names are descriptive
1. ☐ Code passes linting (flake8/pylint)
1. ☐ No hardcoded values (use constants)
Appendix: Document Information
	Document Title
	PySpark Coding Standards

	Version
	1.0

	Applies To
	Apache Spark 3.x (All Platforms)

Page of
