DataFrame API Patterns

DATAFRAME API
PATTERNS

Chaining • Column Operations • Transformations • Anti-Patterns

Version 1.0

Table of Contents

1. Method Chaining
Fluent method chaining creates readable, maintainable transformation pipelines. Each method returns a DataFrame, enabling sequential operations.
1.1 Clean Chaining Pattern
✅ Good: Clear chain with line breaks
result_df = (
 raw_df
 .filter(col('status') == 'ACTIVE')
 .select('id', 'name', 'amount', 'region')
 .withColumn('amount_cents', (col('amount') * 100).cast('int'))
 .withColumn('processed_date', current_date())
 .dropDuplicates(['id'])
 .orderBy(desc('amount'))
)
1.2 Breaking Chains for Clarity
When chains become too long, break into logical steps

Step 1: Filter and select
filtered_df = (
 raw_df
 .filter(col('status') == 'ACTIVE')
 .select('id', 'name', 'amount', 'region')
)

Step 2: Enrich with calculations
enriched_df = (
 filtered_df
 .withColumn('tax', col('amount') * 0.1)
 .withColumn('total', col('amount') + col('tax'))
)

Step 3: Aggregate
summary_df = (
 enriched_df
 .groupBy('region')
 .agg(sum('total').alias('region_total'))
)

2. Column Operations
2.1 Column Selection
Select specific columns
df.select('id', 'name', 'amount')
df.select(col('id'), col('name'), col('amount'))

Select with rename
df.select(
 col('customer_id').alias('id'),
 col('full_name').alias('name')
)

Select all except specific columns
df.drop('internal_field', 'temp_column')

Dynamic column selection
numeric_cols = [c for c, t in df.dtypes if t in ('int', 'double')]
df.select(numeric_cols)
2.2 Adding/Modifying Columns
Single column
df = df.withColumn('amount_usd', col('amount') * 1.1)

Multiple columns (chain)
df = (df
 .withColumn('year', year(col('date')))
 .withColumn('month', month(col('date')))
 .withColumn('quarter', quarter(col('date')))
)

Conditional column
df = df.withColumn('status_label',
 when(col('status') == 'A', 'Active')
 .when(col('status') == 'I', 'Inactive')
 .otherwise('Unknown')
)

3. Filtering Patterns
3.1 Basic Filters
Single condition
df.filter(col('amount') > 100)
df.where(col('status') == 'ACTIVE') # Alias for filter

Multiple conditions (AND)
df.filter((col('amount') > 100) & (col('status') == 'ACTIVE'))

Multiple conditions (OR)
df.filter((col('region') == 'EAST') | (col('region') == 'WEST'))

IN clause
df.filter(col('region').isin('EAST', 'WEST', 'NORTH'))

NOT IN
df.filter(~col('region').isin('EXCLUDED'))
3.2 Advanced Filters
NULL handling
df.filter(col('email').isNotNull())
df.filter(col('phone').isNull())

String patterns
df.filter(col('name').like('%Smith%'))
df.filter(col('email').rlike(r'^[a-z]+@company\.com$'))
df.filter(col('name').startswith('Dr.'))
df.filter(col('code').endswith('_ACTIVE'))

Date ranges
df.filter(col('date').between('2024-01-01', '2024-12-31'))
df.filter((col('date') >= start_date) & (col('date') <= end_date))

4. Aggregation Patterns
4.1 Basic Aggregations
from pyspark.sql.functions import sum, count, avg, min, max, countDistinct

Simple aggregation
df.groupBy('region').agg(
 sum('amount').alias('total_amount'),
 count('*').alias('record_count'),
 avg('amount').alias('avg_amount'),
 min('amount').alias('min_amount'),
 max('amount').alias('max_amount'),
 countDistinct('customer_id').alias('unique_customers')
)
4.2 Multiple Grouping Levels
Group by multiple columns
df.groupBy('region', 'product_category', 'year')
 .agg(sum('revenue').alias('total_revenue'))

Pivot table
df.groupBy('region')
 .pivot('quarter', ['Q1', 'Q2', 'Q3', 'Q4'])
 .agg(sum('revenue'))

Rollup (hierarchical subtotals)
df.rollup('region', 'city').agg(sum('sales').alias('total'))

Cube (all combinations)
df.cube('region', 'product').agg(sum('sales').alias('total'))

5. Anti-Patterns to Avoid
5.1 Performance Anti-Patterns
	❌ Anti-Pattern
	✅ Better Approach

	df.collect() for large data
	Use take(n), write to storage

	for row in df.collect():
	Use DataFrame operations

	UDFs for simple operations
	Use built-in functions

	df.count() in loop
	Cache if reusing, or avoid

	select('*') through pipeline
	Select only needed columns

5.2 Code Examples
❌ Bad: Iterating with Python
result = []
for row in df.collect():
 result.append(row['amount'] * 1.1)

✅ Good: DataFrame operation
result_df = df.withColumn('new_amount', col('amount') * 1.1)

❌ Bad: Repeated actions
print(f'Count: {df.count()}')
print(f'Sum: {df.agg(sum("amount")).collect()[0][0]}')
This reads data twice!

✅ Good: Single action
stats = df.agg(count('*').alias('cnt'), sum('amount').alias('total')).collect()[0]
print(f'Count: {stats["cnt"]}, Sum: {stats["total"]}')

6. Quick Reference
6.1 Common Patterns
	Operation
	Pattern

	Rename column
	df.withColumnRenamed('old', 'new')

	Cast type
	df.withColumn('c', col('c').cast('int'))

	Null to default
	df.withColumn('c', coalesce(col('c'), lit(0)))

	Remove duplicates
	df.dropDuplicates(['key_col'])

	Fill nulls
	df.fillna({'col1': 0, 'col2': 'N/A'})

	Sort
	df.orderBy(desc('date'), asc('id'))

Appendix: Document Information
	Document Title
	DataFrame API Patterns

	Version
	1.0

	Applies To
	Apache Spark 3.x (All Platforms)

Page of
