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1. Schema Definition
Explicit schema definition ensures data quality, improves read performance, and prevents unexpected type inference issues.
1.1 Defining Schemas
from pyspark.sql.types import (
    StructType, StructField,
    StringType, IntegerType, LongType,
    DoubleType, DecimalType,
    DateType, TimestampType,
    BooleanType, ArrayType, MapType
)

# Method 1: StructType with StructFields
customer_schema = StructType([
    StructField('customer_id', StringType(), nullable=False),
    StructField('name', StringType(), nullable=True),
    StructField('email', StringType(), nullable=True),
    StructField('age', IntegerType(), nullable=True),
    StructField('balance', DecimalType(18, 2), nullable=True),
    StructField('created_date', DateType(), nullable=False),
    StructField('is_active', BooleanType(), nullable=False)
])

# Method 2: DDL string (simpler syntax)
customer_schema_ddl = '''
    customer_id STRING NOT NULL,
    name STRING,
    email STRING,
    age INT,
    balance DECIMAL(18,2),
    created_date DATE NOT NULL,
    is_active BOOLEAN NOT NULL
'''


2. Complex Types
2.1 Nested Structures
# Nested struct
address_schema = StructType([
    StructField('street', StringType()),
    StructField('city', StringType()),
    StructField('state', StringType()),
    StructField('zip', StringType())
])

customer_with_address = StructType([
    StructField('customer_id', StringType(), False),
    StructField('name', StringType()),
    StructField('address', address_schema)  # Nested struct
])

# Accessing nested fields
df.select('customer_id', 'address.city', 'address.state')
df.select(col('address.city').alias('city'))
2.2 Arrays and Maps
# Array type
schema_with_array = StructType([
    StructField('order_id', StringType()),
    StructField('items', ArrayType(StringType())),  # Array of strings
    StructField('quantities', ArrayType(IntegerType()))
])

# Map type
schema_with_map = StructType([
    StructField('product_id', StringType()),
    StructField('attributes', MapType(StringType(), StringType()))
])

# Working with arrays
from pyspark.sql.functions import explode, array_contains, size
df.select(explode('items').alias('item'))
df.filter(array_contains('items', 'SKU123'))
df.withColumn('item_count', size('items'))


3. Schema Enforcement
3.1 Read with Schema
# Apply schema on read (recommended)
df = spark.read.schema(customer_schema).parquet('data/customers/')

# For CSV with header
df = spark.read.schema(customer_schema).option('header', True).csv('data.csv')

# Enforce schema strictly (fail on mismatch)
df = spark.read.schema(customer_schema).option('mode', 'FAILFAST').json('data/')
3.2 Read Modes
	Mode
	Behavior

	PERMISSIVE
	Default. Sets malformed fields to null, stores bad record in _corrupt_record

	DROPMALFORMED
	Silently drops rows that don't match schema

	FAILFAST
	Throws exception on first schema violation



⚠️ Always use explicit schemas in production. Schema inference reads data twice and may infer incorrect types.


4. Schema Evolution
4.1 Delta Lake Schema Evolution
# Enable schema evolution on write
df.write.format('delta')
    .option('mergeSchema', 'true')  # Add new columns
    .mode('append')
    .save('delta/customers/')

# Or set at session level
spark.conf.set('spark.databricks.delta.schema.autoMerge.enabled', 'true')

# Overwrite schema completely (dangerous!)
df.write.format('delta')
    .option('overwriteSchema', 'true')
    .mode('overwrite')
    .save('delta/customers/')
4.2 Compatible Changes
	Change Type
	Safe?
	Notes

	Add nullable column
	✅ Yes
	Use mergeSchema

	Widen numeric type
	✅ Yes
	int→long, float→double

	Remove column
	⚠️ Careful
	May break consumers

	Rename column
	❌ No
	Use column mapping

	Change data type
	❌ No
	Cast explicitly





5. Nullable Handling
5.1 Nullable Best Practices
# Define required fields as non-nullable
StructField('id', StringType(), nullable=False)  # Primary key
StructField('created_at', TimestampType(), nullable=False)  # Audit

# Optional fields as nullable
StructField('middle_name', StringType(), nullable=True)
StructField('phone', StringType(), nullable=True)

# Handle nulls in transformations
from pyspark.sql.functions import coalesce, when, lit

df = df.withColumn('email',
    coalesce(col('email'), lit('unknown@example.com'))
)

df = df.withColumn('status',
    when(col('status').isNull(), 'PENDING')
    .otherwise(col('status'))
)
5.2 Null-Safe Operations
# Null-safe equality
df.filter(col('a').eqNullSafe(col('b')))

# Fill nulls
df.fillna({'amount': 0, 'status': 'UNKNOWN'})

# Drop rows with nulls
df.dropna()  # Drop if any null
df.dropna(subset=['id', 'date'])  # Drop if these columns null
df.dropna(how='all')  # Drop only if all columns null


6. Quick Reference
6.1 Common Data Types
	PySpark Type
	Python Equivalent
	Use Case

	StringType()
	str
	Text, IDs, codes

	IntegerType()
	int (32-bit)
	Small integers

	LongType()
	int (64-bit)
	Large integers

	DoubleType()
	float
	Floating point

	DecimalType(p,s)
	Decimal
	Financial amounts

	DateType()
	date
	Dates without time

	TimestampType()
	datetime
	Date with time

	BooleanType()
	bool
	True/False flags



6.2 Checklist
1. ☐ All schemas defined explicitly (no inference)
1. ☐ Primary keys marked as non-nullable
1. ☐ Appropriate precision for DecimalType
1. ☐ Schema evolution strategy documented
1. ☐ Null handling defined for all columns
1. ☐ Complex types (arrays/maps) used appropriately
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