Schema Design & Evolution

SCHEMA DESIGN
& EVOLUTION

Schema Definition • Enforcement • Merging • Nullable Handling

Version 1.0

Table of Contents

1. Schema Definition
Explicit schema definition ensures data quality, improves read performance, and prevents unexpected type inference issues.
1.1 Defining Schemas
from pyspark.sql.types import (
 StructType, StructField,
 StringType, IntegerType, LongType,
 DoubleType, DecimalType,
 DateType, TimestampType,
 BooleanType, ArrayType, MapType
)

Method 1: StructType with StructFields
customer_schema = StructType([
 StructField('customer_id', StringType(), nullable=False),
 StructField('name', StringType(), nullable=True),
 StructField('email', StringType(), nullable=True),
 StructField('age', IntegerType(), nullable=True),
 StructField('balance', DecimalType(18, 2), nullable=True),
 StructField('created_date', DateType(), nullable=False),
 StructField('is_active', BooleanType(), nullable=False)
])

Method 2: DDL string (simpler syntax)
customer_schema_ddl = '''
 customer_id STRING NOT NULL,
 name STRING,
 email STRING,
 age INT,
 balance DECIMAL(18,2),
 created_date DATE NOT NULL,
 is_active BOOLEAN NOT NULL
'''

2. Complex Types
2.1 Nested Structures
Nested struct
address_schema = StructType([
 StructField('street', StringType()),
 StructField('city', StringType()),
 StructField('state', StringType()),
 StructField('zip', StringType())
])

customer_with_address = StructType([
 StructField('customer_id', StringType(), False),
 StructField('name', StringType()),
 StructField('address', address_schema) # Nested struct
])

Accessing nested fields
df.select('customer_id', 'address.city', 'address.state')
df.select(col('address.city').alias('city'))
2.2 Arrays and Maps
Array type
schema_with_array = StructType([
 StructField('order_id', StringType()),
 StructField('items', ArrayType(StringType())), # Array of strings
 StructField('quantities', ArrayType(IntegerType()))
])

Map type
schema_with_map = StructType([
 StructField('product_id', StringType()),
 StructField('attributes', MapType(StringType(), StringType()))
])

Working with arrays
from pyspark.sql.functions import explode, array_contains, size
df.select(explode('items').alias('item'))
df.filter(array_contains('items', 'SKU123'))
df.withColumn('item_count', size('items'))

3. Schema Enforcement
3.1 Read with Schema
Apply schema on read (recommended)
df = spark.read.schema(customer_schema).parquet('data/customers/')

For CSV with header
df = spark.read.schema(customer_schema).option('header', True).csv('data.csv')

Enforce schema strictly (fail on mismatch)
df = spark.read.schema(customer_schema).option('mode', 'FAILFAST').json('data/')
3.2 Read Modes
	Mode
	Behavior

	PERMISSIVE
	Default. Sets malformed fields to null, stores bad record in _corrupt_record

	DROPMALFORMED
	Silently drops rows that don't match schema

	FAILFAST
	Throws exception on first schema violation

⚠️ Always use explicit schemas in production. Schema inference reads data twice and may infer incorrect types.

4. Schema Evolution
4.1 Delta Lake Schema Evolution
Enable schema evolution on write
df.write.format('delta')
 .option('mergeSchema', 'true') # Add new columns
 .mode('append')
 .save('delta/customers/')

Or set at session level
spark.conf.set('spark.databricks.delta.schema.autoMerge.enabled', 'true')

Overwrite schema completely (dangerous!)
df.write.format('delta')
 .option('overwriteSchema', 'true')
 .mode('overwrite')
 .save('delta/customers/')
4.2 Compatible Changes
	Change Type
	Safe?
	Notes

	Add nullable column
	✅ Yes
	Use mergeSchema

	Widen numeric type
	✅ Yes
	int→long, float→double

	Remove column
	⚠️ Careful
	May break consumers

	Rename column
	❌ No
	Use column mapping

	Change data type
	❌ No
	Cast explicitly

5. Nullable Handling
5.1 Nullable Best Practices
Define required fields as non-nullable
StructField('id', StringType(), nullable=False) # Primary key
StructField('created_at', TimestampType(), nullable=False) # Audit

Optional fields as nullable
StructField('middle_name', StringType(), nullable=True)
StructField('phone', StringType(), nullable=True)

Handle nulls in transformations
from pyspark.sql.functions import coalesce, when, lit

df = df.withColumn('email',
 coalesce(col('email'), lit('unknown@example.com'))
)

df = df.withColumn('status',
 when(col('status').isNull(), 'PENDING')
 .otherwise(col('status'))
)
5.2 Null-Safe Operations
Null-safe equality
df.filter(col('a').eqNullSafe(col('b')))

Fill nulls
df.fillna({'amount': 0, 'status': 'UNKNOWN'})

Drop rows with nulls
df.dropna() # Drop if any null
df.dropna(subset=['id', 'date']) # Drop if these columns null
df.dropna(how='all') # Drop only if all columns null

6. Quick Reference
6.1 Common Data Types
	PySpark Type
	Python Equivalent
	Use Case

	StringType()
	str
	Text, IDs, codes

	IntegerType()
	int (32-bit)
	Small integers

	LongType()
	int (64-bit)
	Large integers

	DoubleType()
	float
	Floating point

	DecimalType(p,s)
	Decimal
	Financial amounts

	DateType()
	date
	Dates without time

	TimestampType()
	datetime
	Date with time

	BooleanType()
	bool
	True/False flags

6.2 Checklist
1. ☐ All schemas defined explicitly (no inference)
1. ☐ Primary keys marked as non-nullable
1. ☐ Appropriate precision for DecimalType
1. ☐ Schema evolution strategy documented
1. ☐ Null handling defined for all columns
1. ☐ Complex types (arrays/maps) used appropriately
Appendix: Document Information
	Document Title
	Schema Design & Evolution

	Version
	1.0

	Applies To
	Apache Spark 3.x (All Platforms)

Page of
