SparkSQL Best Practices

SPARK SQL
BEST PRACTICES

SQL vs DataFrame • CTEs • Temp Views • Query Optimization

Version 1.0

Table of Contents

1. SQL vs DataFrame API
SparkSQL and DataFrame API are interchangeable and use the same optimizer. Choose based on readability and use case.
1.1 When to Use Each
	Use SQL When
	Use DataFrame When

	Complex queries with multiple joins
	Programmatic transformations

	Team has SQL expertise
	Dynamic column operations

	Query text from external source
	Chained transformations

	Window functions (often cleaner)
	Type safety and IDE support

1.2 Equivalent Operations
Register DataFrame as temp view
df.createOrReplaceTempView('claims')

SQL approach
result = spark.sql('''
 SELECT region, SUM(amount) as total
 FROM claims
 WHERE status = 'PAID'
 GROUP BY region
'''
)

DataFrame approach (equivalent)
result = (df
 .filter(col('status') == 'PAID')
 .groupBy('region')
 .agg(sum('amount').alias('total'))
)

2. Common Table Expressions (CTEs)
2.1 CTE Syntax
result = spark.sql('''
 WITH filtered_claims AS (
 SELECT *
 FROM claims
 WHERE service_date >= '2024-01-01'
),
 aggregated AS (
 SELECT region, COUNT(*) as claim_count, SUM(amount) as total
 FROM filtered_claims
 GROUP BY region
),
 ranked AS (
 SELECT *, RANK() OVER (ORDER BY total DESC) as rank
 FROM aggregated
)
 SELECT * FROM ranked WHERE rank <= 10
'''
2.2 CTE Benefits
1. Improves query readability
1. Breaks complex logic into logical steps
1. Can reference same CTE multiple times
1. Optimized by Catalyst (no materialization)
1. Easier to debug step-by-step

3. Temp Views
3.1 View Types
Session-scoped temp view (default)
df.createOrReplaceTempView('my_view')

Global temp view (shared across sessions)
df.createOrReplaceGlobalTempView('global_view')

Access global view
spark.sql('SELECT * FROM global_temp.global_view')

Check if view exists
spark.catalog.tableExists('my_view')

Drop view
spark.catalog.dropTempView('my_view')
3.2 View Best Practices
1. Use descriptive view names matching source
1. Drop views when no longer needed
1. Prefer session views over global (isolation)
1. Document view purpose in code comments

4. Query Optimization
4.1 SQL Optimization Tips
-- Use column aliases consistently
SELECT customer_id AS cust_id, -- Clear aliasing
 SUM(amount) AS total_amount
FROM orders GROUP BY customer_id

-- Push predicates as early as possible
SELECT * FROM (
 SELECT * FROM large_table WHERE date = '2024-01-01' -- Filter early
) t JOIN small_table s ON t.id = s.id

-- Use explicit column list (not *)
SELECT id, name, amount -- Better than SELECT *
FROM orders
4.2 Join Hints
-- Broadcast hint for small tables
SELECT /*+ BROADCAST(small_table) */
 l.*, s.name
FROM large_table l
JOIN small_table s ON l.id = s.id

-- Shuffle hash join hint
SELECT /*+ SHUFFLE_HASH(t1) */
 t1.*, t2.name
FROM table1 t1 JOIN table2 t2 ON t1.id = t2.id

-- Merge join hint
SELECT /*+ MERGE(t1, t2) */ * FROM t1 JOIN t2 ON t1.id = t2.id

5. Window Functions
5.1 Window Syntax
SELECT
 customer_id,
 order_date,
 amount,
 ROW_NUMBER() OVER (
 PARTITION BY customer_id ORDER BY order_date DESC
) AS row_num,
 SUM(amount) OVER (
 PARTITION BY customer_id ORDER BY order_date
 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
) AS running_total,
 LAG(amount, 1) OVER (
 PARTITION BY customer_id ORDER BY order_date
) AS prev_amount
FROM orders
5.2 Common Window Functions
	Function
	Purpose

	ROW_NUMBER()
	Unique row number within partition

	RANK()
	Rank with gaps for ties

	DENSE_RANK()
	Rank without gaps

	LAG(col, n)
	Value from n rows before

	LEAD(col, n)
	Value from n rows after

	FIRST_VALUE()
	First value in window

	SUM() OVER
	Running/cumulative sum

6. Quick Reference
1. ☐ Use CTEs for complex multi-step queries
1. ☐ Register views with descriptive names
1. ☐ Use broadcast hints for small tables
1. ☐ Prefer explicit columns over SELECT *
1. ☐ Push filters as early as possible
1. ☐ Use window functions for ranking/running totals
Appendix: Document Information
	Document Title
	SparkSQL Best Practices

	Version
	1.0

	Applies To
	Apache Spark 3.x (All Platforms)

Page of
