UDF Development Guide

UDF DEVELOPMENT
GUIDE

Scalar UDFs • Pandas UDFs • Vectorization • Performance

Version 1.0

Table of Contents

1. UDF Overview
User-Defined Functions (UDFs) extend Spark with custom logic. However, they bypass Catalyst optimization, so use built-in functions when possible.
1.1 UDF Types
	Type
	Performance
	Use Case

	Scalar UDF
	Slow (row-by-row)
	Simple row transformations

	Pandas UDF
	Fast (vectorized)
	Complex transformations, ML

	Built-in
	Fastest (optimized)
	Always prefer when possible

⚠️ Scalar UDFs process one row at a time with Python/JVM serialization overhead. Use Pandas UDFs or built-in functions for better performance.

2. Scalar UDFs
2.1 Basic Syntax
from pyspark.sql.functions import udf
from pyspark.sql.types import StringType, IntegerType

Method 1: Decorator
@udf(returnType=StringType())
def format_name(first: str, last: str) -> str:
 if first and last:
 return f'{last.upper()}, {first.title()}'
 return None

Method 2: Function registration
def calculate_age(birth_year: int) -> int:
 from datetime import datetime
 return datetime.now().year - birth_year if birth_year else None

calculate_age_udf = udf(calculate_age, IntegerType())

Usage
df = df.withColumn('full_name', format_name(col('first'), col('last')))
df = df.withColumn('age', calculate_age_udf(col('birth_year')))
2.2 SQL Registration
Register for SQL use
spark.udf.register('format_name', format_name)
spark.udf.register('calc_age', calculate_age, IntegerType())

Use in SQL
spark.sql('''
 SELECT format_name(first_name, last_name) as name,
 calc_age(birth_year) as age
 FROM customers
''')

3. Pandas UDFs (Vectorized)
Pandas UDFs use Apache Arrow for efficient data transfer and process data in batches, providing 10-100x better performance than scalar UDFs.
3.1 Scalar Pandas UDF
from pyspark.sql.functions import pandas_udf
import pandas as pd

@pandas_udf(StringType())
def normalize_text(series: pd.Series) -> pd.Series:
 return series.str.strip().str.lower().str.replace(r'\s+', ' ', regex=True)

Usage
df = df.withColumn('clean_name', normalize_text(col('name')))
3.2 Grouped Map Pandas UDF
from pyspark.sql.functions import pandas_udf, PandasUDFType
from pyspark.sql.types import StructType, StructField, StringType, DoubleType

Define output schema
output_schema = StructType([
 StructField('customer_id', StringType()),
 StructField('amount', DoubleType()),
 StructField('normalized_amount', DoubleType())
])

@pandas_udf(output_schema, PandasUDFType.GROUPED_MAP)
def normalize_per_customer(pdf: pd.DataFrame) -> pd.DataFrame:
 pdf['normalized_amount'] = (
 (pdf['amount'] - pdf['amount'].mean()) / pdf['amount'].std()
)
 return pdf[['customer_id', 'amount', 'normalized_amount']]

Apply per group
result = df.groupBy('customer_id').apply(normalize_per_customer)

4. When to Avoid UDFs
4.1 Use Built-in Functions Instead
❌ Bad: UDF for simple string operation
@udf(StringType())
def upper_name(name):
 return name.upper() if name else None

✅ Good: Built-in function
from pyspark.sql.functions import upper
df = df.withColumn('upper_name', upper(col('name')))

❌ Bad: UDF for date parsing
@udf(DateType())
def parse_date(date_str):
 from datetime import datetime
 return datetime.strptime(date_str, '%Y-%m-%d').date()

✅ Good: Built-in function
df = df.withColumn('date', to_date(col('date_str'), 'yyyy-MM-dd'))
4.2 Performance Comparison
	Approach
	Relative Speed
	Notes

	Built-in function
	1x (baseline)
	Always prefer

	Pandas UDF
	2-10x slower
	Use when needed

	Scalar UDF
	10-100x slower
	Avoid if possible

5. UDF Best Practices
5.1 Development Guidelines
1. Always define return type explicitly
1. Handle None/null values gracefully
1. Keep UDFs pure (no side effects)
1. Avoid imports inside UDF body when possible
1. Use Pandas UDFs for complex operations
1. Test UDFs independently before using in pipelines
5.2 Null Handling
@udf(StringType())
def safe_format(value: str) -> str:
 # Always handle None
 if value is None:
 return None
 return value.strip().upper()

Alternative: Use coalesce in pipeline
df = df.withColumn('formatted',
 when(col('value').isNotNull(), safe_format(col('value')))
 .otherwise(lit('N/A'))
)
5.3 Checklist
1. ☐ Checked if built-in function exists
1. ☐ Return type explicitly defined
1. ☐ Null handling implemented
1. ☐ UDF is pure (no side effects)
1. ☐ Used Pandas UDF for vectorizable logic
1. ☐ Unit tests written
Appendix: Document Information
	Document Title
	UDF Development Guide

	Version
	1.0

	Applies To
	Apache Spark 3.x (All Platforms)

Page of
