Caching & Persistence

CACHING &
PERSISTENCE

Cache vs Persist • Storage Levels • When to Cache • Unpersist

Version 1.0

Table of Contents

1. Caching Basics
Caching stores computed DataFrame partitions in memory (or disk) to avoid recomputation when the same data is accessed multiple times.
1.1 Cache vs Persist
cache() - shorthand for persist(MEMORY_AND_DISK)
df.cache()

persist() - specify storage level
from pyspark import StorageLevel
df.persist(StorageLevel.MEMORY_AND_DISK)

They are equivalent:
df.cache() # Same as
df.persist(StorageLevel.MEMORY_AND_DISK)
1.2 Storage Levels
	Storage Level
	Description

	MEMORY_ONLY
	Cache in memory only, recompute if evicted

	MEMORY_AND_DISK
	Cache in memory, spill to disk if needed (default)

	MEMORY_ONLY_SER
	Serialized in memory (less space, more CPU)

	DISK_ONLY
	Cache on disk only

	OFF_HEAP
	Store in off-heap memory (avoids GC)

2. When to Cache
2.1 Good Candidates
1. DataFrames accessed multiple times
1. Expensive transformations (joins, aggregations)
1. Iterative algorithms (ML training)
1. Data used in multiple downstream paths
1. Intermediate results for debugging
2.2 When NOT to Cache
1. Data used only once
1. Data that fits easily in source (fast re-read)
1. When memory is constrained
1. Large DataFrames that would cause GC issues
2.3 Pattern Example
✅ Good: Cache reused DataFrame
base_df = (spark.read.parquet('large_data/')
 .filter(col('date') >= '2024-01-01')
 .join(broadcast(dim_df), 'key')
)
base_df.cache() # Will be reused

Multiple uses
summary1 = base_df.groupBy('region').count()
summary2 = base_df.groupBy('product').sum('amount')
summary3 = base_df.filter(col('status') == 'ACTIVE').count()

Clean up when done
base_df.unpersist()

3. Choosing Storage Level
3.1 Decision Guide
Storage Level Selection:

1. Does DataFrame fit in memory?
 → YES + Fast deserialization needed → MEMORY_ONLY
 → YES + Memory pressure → MEMORY_ONLY_SER
 → NO → MEMORY_AND_DISK (default)

2. Is recomputation very expensive?
 → YES → Use _2 suffix for replication
 → e.g., MEMORY_AND_DISK_2

3. Having GC issues with cached data?
 → Consider OFF_HEAP
3.2 Usage Examples
from pyspark import StorageLevel

Memory only - fastest, but may lose partitions
df.persist(StorageLevel.MEMORY_ONLY)

Serialized - uses less memory
df.persist(StorageLevel.MEMORY_ONLY_SER)

Disk only - when memory is scarce
df.persist(StorageLevel.DISK_ONLY)

With replication - for fault tolerance
df.persist(StorageLevel.MEMORY_AND_DISK_2)

4. Managing Cache
4.1 Unpersist
Remove from cache when done
df.unpersist()

Unpersist synchronously (wait for completion)
df.unpersist(blocking=True)

Clear all cached DataFrames
spark.catalog.clearCache()
4.2 Monitoring Cache
Check if cached
df.is_cached

View storage info in Spark UI
Go to: Storage tab → See cached RDDs/DataFrames

Programmatic check
for rdd_info in spark.sparkContext._jsc.sc().getRDDStorageInfo():
 print(f'{rdd_info.name()}: {rdd_info.memSize()} bytes')

⚠️ Always unpersist cached DataFrames when no longer needed. Cached data consumes memory that could be used for computation.

5. Best Practices
5.1 Caching Checklist
1. ☐ Only cache DataFrames used multiple times
1. ☐ Cache after expensive transformations, before reuse
1. ☐ Choose appropriate storage level
1. ☐ Unpersist when no longer needed
1. ☐ Monitor cache usage in Spark UI
1. ☐ Trigger cache with an action (count, show)
1. ☐ Don't cache at end of pipeline (before write)
5.2 Common Mistakes
❌ Mistake 1: Caching without action
df.cache() # Does nothing yet!
Need an action to materialize cache:
df.cache().count() # Now cached

❌ Mistake 2: Caching before transformations
df.cache() # Caches raw data
result = df.filter(...).groupBy(...) # Still recomputes!

✅ Correct: Cache after transformations
transformed = df.filter(...).groupBy(...)
transformed.cache().count()

❌ Mistake 3: Forgetting to unpersist
Memory leak! Always clean up.
Appendix: Document Information
	Document Title
	Caching & Persistence

	Version
	1.0

	Applies To
	Apache Spark 3.x (All Platforms)

Page of
