Data Skew Handling

DATA SKEW
HANDLING

Detection • Salting • AQE • Isolation Techniques

Version 1.0

Table of Contents

1. Understanding Data Skew
Data skew occurs when data is unevenly distributed across partitions. Some partitions have significantly more data than others, causing stragglers that slow the entire job.
1.1 Symptoms of Skew
1. Some tasks take much longer than others
1. Stage progress shows few tasks remaining for long time
1. Spill to disk on some executors
1. OOM errors on specific tasks
1. Job duration dominated by slowest tasks
1.2 Common Causes
	Cause
	Example

	Hot keys
	One customer has millions of transactions

	Null values
	Many records with null join keys

	Default values
	'UNKNOWN' or '0' as catch-all

	Time-based
	Most data in recent partitions

2. Detecting Skew
2.1 Spark UI Analysis
Signs of skew in Spark UI:
1. Stage tab: Task duration varies widely
- Median: 10 seconds
- Max: 10 minutes ← Skew!

2. Look at shuffle read/write sizes
- Most tasks: 100 MB
- Some tasks: 10 GB ← Skew!

3. Executor tab: Uneven task distribution
4. SQL tab: Check partition sizes in plan
2.2 Programmatic Detection
Analyze key distribution
key_counts = df.groupBy('join_key').count()

Get statistics
stats = key_counts.agg(
 avg('count').alias('avg_count'),
 max('count').alias('max_count'),
 min('count').alias('min_count'),
 stddev('count').alias('stddev_count')
).collect()[0]

Skew indicator: max >> avg
skew_ratio = stats['max_count'] / stats['avg_count']
print(f'Skew ratio: {skew_ratio}') # > 10 is concerning

Find hot keys
hot_keys = key_counts.filter(col('count') > stats['avg_count'] * 10)

3. AQE Skew Handling
Adaptive Query Execution (AQE) in Spark 3.x automatically detects and handles skewed partitions at runtime.
3.1 Enable AQE Skew Join
Enable AQE (recommended first approach)
spark.conf.set('spark.sql.adaptive.enabled', 'true')
spark.conf.set('spark.sql.adaptive.skewJoin.enabled', 'true')

Tune skew detection
A partition is skewed if:
size > skewedPartitionFactor × median partition size
AND size > skewedPartitionThresholdInBytes

spark.conf.set('spark.sql.adaptive.skewJoin.skewedPartitionFactor', '5')
spark.conf.set('spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes', '256MB')
💡 AQE splits skewed partitions automatically during shuffle. Try this before manual techniques.

4. Salting Technique
4.1 Join Salting
from pyspark.sql.functions import rand, concat, lit, explode, array

SALT_BUCKETS = 20

Step 1: Salt the large (skewed) table
salted_large = large_df.withColumn(
 'salt', (rand() * SALT_BUCKETS).cast('int')
).withColumn(
 'salted_key', concat(col('join_key'), lit('_'), col('salt'))
)

Step 2: Replicate the small table
replicated_small = small_df.withColumn(
 'salt', explode(array([lit(i) for i in range(SALT_BUCKETS)]))
).withColumn(
 'salted_key', concat(col('join_key'), lit('_'), col('salt'))
)

Step 3: Join on salted key
result = salted_large.join(replicated_small, 'salted_key')

Step 4: Drop salt columns
result = result.drop('salt', 'salted_key')

5. Other Techniques
5.1 Isolate Hot Keys
Process hot keys separately
HOT_KEYS = ['KEY_A', 'KEY_B', 'KEY_C'] # Known hot keys

Split data
hot_df = df.filter(col('key').isin(HOT_KEYS))
normal_df = df.filter(~col('key').isin(HOT_KEYS))

Process hot keys with broadcast
hot_result = hot_df.join(broadcast(dim_df), 'key')

Process normal keys with regular join
normal_result = normal_df.join(dim_df, 'key')

Union results
result = hot_result.union(normal_result)
5.2 Handle Null Keys
Null keys often cause skew

Filter nulls before join
non_null_df = df.filter(col('key').isNotNull())
null_df = df.filter(col('key').isNull())

Join only non-null
joined = non_null_df.join(dim_df, 'key')

Handle nulls separately (add default values)
null_with_defaults = null_df.withColumn('dim_value', lit('UNKNOWN'))

result = joined.union(null_with_defaults)
5.3 Checklist
1. ☐ Enable AQE as first approach
1. ☐ Analyze key distribution before joins
1. ☐ Handle null keys separately
1. ☐ Use salting for persistent skew
1. ☐ Isolate known hot keys
1. ☐ Monitor task times in Spark UI
Appendix: Document Information
	Document Title
	Data Skew Handling

	Version
	1.0

	Applies To
	Apache Spark 3.x (All Platforms)

Page of
