Join Optimization Techniques

JOIN OPTIMIZATION
TECHNIQUES

Broadcast • Sort-Merge • Shuffle Hash • Skew Handling

Version 1.0

Table of Contents

1. Join Types Overview
1.1 Physical Join Strategies
	Strategy
	When Used
	Performance

	Broadcast Hash
	Small table < threshold
	Fastest - no shuffle

	Sort Merge
	Large tables, sorted keys
	Efficient for large joins

	Shuffle Hash
	Unsorted, medium tables
	Moderate - hash partitions

	Cartesian
	No join condition
	Avoid! O(n×m) complexity

1.2 Logical Join Types
Inner join (default) - only matching rows
df1.join(df2, 'key')
df1.join(df2, 'key', 'inner')

Left outer - all from left, matching from right
df1.join(df2, 'key', 'left')

Right outer - all from right, matching from left
df1.join(df2, 'key', 'right')

Full outer - all rows from both
df1.join(df2, 'key', 'outer')

Left semi - rows from left with match in right (no right columns)
df1.join(df2, 'key', 'left_semi')

Left anti - rows from left WITHOUT match in right
df1.join(df2, 'key', 'left_anti')

2. Broadcast Joins
Broadcast joins replicate the small table to all executors, eliminating shuffle. This is the fastest join strategy for small tables.
2.1 Using Broadcast
from pyspark.sql.functions import broadcast

Explicit broadcast hint
result = large_df.join(broadcast(small_df), 'key')

Auto-broadcast threshold (default 10 MB)
spark.conf.set('spark.sql.autoBroadcastJoinThreshold', 100 * 1024 * 1024) # 100 MB

Disable auto-broadcast
spark.conf.set('spark.sql.autoBroadcastJoinThreshold', -1)
2.2 Broadcast Guidelines
	Do
	Don't

	Broadcast dimension tables (<100 MB)
	Broadcast large tables (OOM risk)

	Check table size before broadcast
	Broadcast in streaming jobs

	Use for lookup-style joins
	Broadcast frequently changing data

💡 Broadcast tables consume driver memory. Monitor driver memory when using large broadcasts.

3. Sort-Merge Joins
Sort-merge joins sort both tables by the join key, then merge. Efficient for large tables but requires shuffle and sort.
3.1 How It Works
Sort-merge join phases:
1. Shuffle both tables by join key
2. Sort each partition by key
3. Merge sorted partitions

Force sort-merge join
spark.conf.set('spark.sql.join.preferSortMergeJoin', 'true')

SQL hint
spark.sql('''
 SELECT /*+ MERGE(t1, t2) */
 t1.*, t2.name
 FROM large_table t1
 JOIN another_large_table t2 ON t1.id = t2.id
''')
3.2 Optimization Tips
1. Pre-partition tables by join key to avoid shuffle
1. Pre-sort data if stored sorted (bucketing)
1. Use same partition count for both tables
1. Ensure join keys have matching data types

4. Handling Skewed Joins
Skew occurs when certain join keys have disproportionately more records, causing some tasks to run much longer than others.
4.1 AQE Skew Join Optimization
Enable AQE (handles skew automatically in Spark 3.x)
spark.conf.set('spark.sql.adaptive.enabled', 'true')
spark.conf.set('spark.sql.adaptive.skewJoin.enabled', 'true')

Skew detection thresholds
spark.conf.set('spark.sql.adaptive.skewJoin.skewedPartitionFactor', '5')
spark.conf.set('spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes', '256MB')
4.2 Manual Salting
from pyspark.sql.functions import rand, concat, lit

Add salt to skewed key
salt_buckets = 10

Salt the large (fact) table
salted_fact = fact_df.withColumn(
 'salted_key',
 concat(col('join_key'), lit('_'), (rand() * salt_buckets).cast('int'))
)

Explode the small (dimension) table
from pyspark.sql.functions import explode, array
dim_exploded = dim_df.withColumn(
 'salt',
 explode(array([lit(i) for i in range(salt_buckets)]))
).withColumn(
 'salted_key',
 concat(col('join_key'), lit('_'), col('salt'))
)

Join on salted key
result = salted_fact.join(dim_exploded, 'salted_key')

5. Join Best Practices
5.1 Optimization Checklist
1. ☐ Broadcast small tables (<100 MB)
1. ☐ Filter data before joins (reduce shuffle)
1. ☐ Select only needed columns before join
1. ☐ Ensure join key types match
1. ☐ Enable AQE for automatic optimization
1. ☐ Check for skew in Spark UI
1. ☐ Pre-partition if joining repeatedly on same key
5.2 Decision Tree
Join Strategy Selection:

1. Is one table small (<100 MB)?
 → YES: Use BROADCAST join
 → NO: Continue...

2. Are both tables large?
 → YES: Use SORT-MERGE join

3. Is there significant skew?
 → YES: Enable AQE or use SALTING

4. Are tables pre-partitioned by key?
 → YES: Join will avoid shuffle
Appendix: Document Information
	Document Title
	Join Optimization Techniques

	Version
	1.0

	Applies To
	Apache Spark 3.x (All Platforms)

Page of
