Partitioning Strategy Guide

PARTITIONING
STRATEGY GUIDE

Sizing • Repartition vs Coalesce • Partition Pruning • Write Partitioning

Version 1.0

Table of Contents

1. Partition Fundamentals
Partitions are the basic unit of parallelism in Spark. Each partition is processed by a single task on a single core. Proper partitioning is critical for performance.
1.1 Partition Sizing Guidelines
	Metric
	Target
	Issue If Wrong

	Partition Size
	128 MB - 256 MB
	OOM or low parallelism

	Partition Count
	2-4× total cores
	Underutilization or overhead

	Max Per Partition
	< 2 GB
	Task failures

1.2 Calculating Partitions
Calculate optimal partitions
data_size_gb = 100
target_partition_mb = 200
optimal_partitions = (data_size_gb * 1024) // target_partition_mb
print(f'Optimal partitions: {optimal_partitions}') # 512

Check current partitions
print(f'Current partitions: {df.rdd.getNumPartitions()}')

Ensure minimum for parallelism
total_cores = 100 # Example cluster
min_partitions = total_cores * 2 # At least 2x cores
💡 AQE (Adaptive Query Execution) can automatically coalesce shuffle partitions in Spark 3.x. Enable with spark.sql.adaptive.enabled=true.

2. Repartition vs Coalesce
2.1 Key Differences
	Aspect
	repartition()
	coalesce()

	Shuffle
	Always (full shuffle)
	No shuffle (narrow)

	Increase partitions
	✅ Yes
	❌ No

	Decrease partitions
	✅ Yes (even distribution)
	✅ Yes (may be uneven)

	By column
	✅ Yes
	❌ No

2.2 When to Use Each
Use COALESCE when reducing partitions
(e.g., before writing fewer files)
df.coalesce(10).write.parquet('output/')

Use REPARTITION when:
1. Increasing partitions
df.repartition(200)

2. Need even distribution
df.repartition(100) # Even after skewed operations

3. Partitioning by column for joins
df.repartition(100, 'join_key')

4. Writing partitioned data
df.repartition('year', 'month').write.partitionBy('year', 'month').parquet('output/')

3. Partition Pruning
Partition pruning skips reading partitions that don't match filter predicates, dramatically improving read performance.
3.1 Writing Partitioned Data
Partition by date columns (common pattern)
df.write
 .partitionBy('year', 'month')
 .parquet('data/sales/')

Results in directory structure:
data/sales/year=2024/month=01/
data/sales/year=2024/month=02/
...

Reading with filter triggers partition pruning
df = spark.read.parquet('data/sales/')
df.filter(col('year') == 2024).filter(col('month') == 1) # Only reads year=2024/month=01/
3.2 Best Practices
1. Choose low-cardinality columns (date, region, status)
1. Limit partition hierarchy depth (2-3 levels max)
1. Avoid high-cardinality columns (customer_id, timestamp)
1. Order partitions from coarse to fine (year/month/day)
1. Ensure filters use partition columns for pruning

4. Shuffle Partitions
4.1 Configuration
Default shuffle partitions (often too high or low)
spark.conf.get('spark.sql.shuffle.partitions') # Default: 200

Set appropriate shuffle partitions
spark.conf.set('spark.sql.shuffle.partitions', '400')

Rule of thumb:
shuffle_partitions = max(200, data_size_gb * 2)

For large datasets (1 TB):
spark.conf.set('spark.sql.shuffle.partitions', '2000')
4.2 Adaptive Query Execution
Enable AQE (recommended for Spark 3.x)
spark.conf.set('spark.sql.adaptive.enabled', 'true')

AQE automatically:
- Coalesces small shuffle partitions
- Converts joins based on runtime statistics
- Handles skewed partitions

Configure coalesce settings
spark.conf.set('spark.sql.adaptive.coalescePartitions.enabled', 'true')
spark.conf.set('spark.sql.adaptive.coalescePartitions.minPartitionSize', '64MB')
spark.conf.set('spark.sql.adaptive.advisoryPartitionSizeInBytes', '128MB')

5. Common Patterns
5.1 Pre-Join Repartitioning
When joining on same key multiple times
fact_df = fact_df.repartition(200, 'customer_id')
dim_df = dim_df.repartition(200, 'customer_id')

Subsequent joins avoid shuffle
result = fact_df.join(dim_df, 'customer_id')
Both already partitioned by customer_id
5.2 Write Optimization
Control output file count
num_files = 10
df.coalesce(num_files).write.parquet('output/')

Or repartition for even file sizes
df.repartition(num_files).write.parquet('output/')

Partition + limit files per partition
df.repartition('date')
 .write
 .option('maxRecordsPerFile', 1000000)
 .partitionBy('date')
 .parquet('output/')
5.3 Checklist
1. ☐ Partition sizes between 128-256 MB
1. ☐ Partition count = 2-4× total cores
1. ☐ Use coalesce to reduce, repartition to increase
1. ☐ Partition writes by query filter columns
1. ☐ AQE enabled for dynamic optimization
1. ☐ Monitor partition skew in Spark UI
Appendix: Document Information
	Document Title
	Partitioning Strategy Guide

	Version
	1.0

	Applies To
	Apache Spark 3.x (All Platforms)

Page of
