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1. Partition Fundamentals
Partitions are the basic unit of parallelism in Spark. Each partition is processed by a single task on a single core. Proper partitioning is critical for performance.
1.1 Partition Sizing Guidelines
	Metric
	Target
	Issue If Wrong

	Partition Size
	128 MB - 256 MB
	OOM or low parallelism

	Partition Count
	2-4× total cores
	Underutilization or overhead

	Max Per Partition
	< 2 GB
	Task failures



1.2 Calculating Partitions
# Calculate optimal partitions
data_size_gb = 100
target_partition_mb = 200
optimal_partitions = (data_size_gb * 1024) // target_partition_mb
print(f'Optimal partitions: {optimal_partitions}')  # 512

# Check current partitions
print(f'Current partitions: {df.rdd.getNumPartitions()}')

# Ensure minimum for parallelism
total_cores = 100  # Example cluster
min_partitions = total_cores * 2  # At least 2x cores
💡 AQE (Adaptive Query Execution) can automatically coalesce shuffle partitions in Spark 3.x. Enable with spark.sql.adaptive.enabled=true.


2. Repartition vs Coalesce
2.1 Key Differences
	Aspect
	repartition()
	coalesce()

	Shuffle
	Always (full shuffle)
	No shuffle (narrow)

	Increase partitions
	✅ Yes
	❌ No

	Decrease partitions
	✅ Yes (even distribution)
	✅ Yes (may be uneven)

	By column
	✅ Yes
	❌ No



2.2 When to Use Each
# Use COALESCE when reducing partitions
# (e.g., before writing fewer files)
df.coalesce(10).write.parquet('output/')

# Use REPARTITION when:
# 1. Increasing partitions
df.repartition(200)

# 2. Need even distribution
df.repartition(100)  # Even after skewed operations

# 3. Partitioning by column for joins
df.repartition(100, 'join_key')

# 4. Writing partitioned data
df.repartition('year', 'month').write.partitionBy('year', 'month').parquet('output/')


3. Partition Pruning
Partition pruning skips reading partitions that don't match filter predicates, dramatically improving read performance.
3.1 Writing Partitioned Data
# Partition by date columns (common pattern)
df.write
    .partitionBy('year', 'month')
    .parquet('data/sales/')

# Results in directory structure:
# data/sales/year=2024/month=01/
# data/sales/year=2024/month=02/
# ...

# Reading with filter triggers partition pruning
df = spark.read.parquet('data/sales/')
df.filter(col('year') == 2024).filter(col('month') == 1)  # Only reads year=2024/month=01/
3.2 Best Practices
1. Choose low-cardinality columns (date, region, status)
1. Limit partition hierarchy depth (2-3 levels max)
1. Avoid high-cardinality columns (customer_id, timestamp)
1. Order partitions from coarse to fine (year/month/day)
1. Ensure filters use partition columns for pruning


4. Shuffle Partitions
4.1 Configuration
# Default shuffle partitions (often too high or low)
spark.conf.get('spark.sql.shuffle.partitions')  # Default: 200

# Set appropriate shuffle partitions
spark.conf.set('spark.sql.shuffle.partitions', '400')

# Rule of thumb:
# shuffle_partitions = max(200, data_size_gb * 2)

# For large datasets (1 TB):
spark.conf.set('spark.sql.shuffle.partitions', '2000')
4.2 Adaptive Query Execution
# Enable AQE (recommended for Spark 3.x)
spark.conf.set('spark.sql.adaptive.enabled', 'true')

# AQE automatically:
# - Coalesces small shuffle partitions
# - Converts joins based on runtime statistics
# - Handles skewed partitions

# Configure coalesce settings
spark.conf.set('spark.sql.adaptive.coalescePartitions.enabled', 'true')
spark.conf.set('spark.sql.adaptive.coalescePartitions.minPartitionSize', '64MB')
spark.conf.set('spark.sql.adaptive.advisoryPartitionSizeInBytes', '128MB')


5. Common Patterns
5.1 Pre-Join Repartitioning
# When joining on same key multiple times
fact_df = fact_df.repartition(200, 'customer_id')
dim_df = dim_df.repartition(200, 'customer_id')

# Subsequent joins avoid shuffle
result = fact_df.join(dim_df, 'customer_id')
# Both already partitioned by customer_id
5.2 Write Optimization
# Control output file count
num_files = 10
df.coalesce(num_files).write.parquet('output/')

# Or repartition for even file sizes
df.repartition(num_files).write.parquet('output/')

# Partition + limit files per partition
df.repartition('date')
  .write
  .option('maxRecordsPerFile', 1000000)
  .partitionBy('date')
  .parquet('output/')
5.3 Checklist
1. ☐ Partition sizes between 128-256 MB
1. ☐ Partition count = 2-4× total cores
1. ☐ Use coalesce to reduce, repartition to increase
1. ☐ Partition writes by query filter columns
1. ☐ AQE enabled for dynamic optimization
1. ☐ Monitor partition skew in Spark UI
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