Query Plan Analysis

QUERY PLAN
ANALYSIS

explain() • Physical Plans • Identifying Bottlenecks • Optimization

Version 1.0

Table of Contents

1. Using explain()
1.1 Explain Modes
Simple explain (physical plan only)
df.explain()

Extended explain (parsed, analyzed, optimized, physical)
df.explain(True)
df.explain('extended')

Formatted explain (easier to read)
df.explain('formatted')

With cost statistics
df.explain('cost')

Codegen explain (shows generated code)
df.explain('codegen')
1.2 Plan Types
	Plan
	Description

	Parsed
	AST from SQL/DataFrame operations

	Analyzed
	Resolved columns and tables

	Optimized
	After Catalyst optimization rules

	Physical
	Actual execution plan (what runs)

2. Reading Physical Plans
2.1 Key Operators
	Operator
	Meaning

	Scan parquet/delta
	Reading from data source

	Filter
	Row filtering (WHERE clause)

	Project
	Column selection (SELECT)

	Exchange
	Shuffle (data redistribution)

	BroadcastExchange
	Broadcast for join

	HashAggregate
	Aggregation (GROUP BY)

	SortMergeJoin
	Join via sort and merge

	BroadcastHashJoin
	Join via broadcast

2.2 Example Plan Analysis
== Physical Plan ==
*(2) HashAggregate(keys=[region], functions=[sum(amount)])
+- Exchange hashpartitioning(region, 200), ENSURE_REQUIREMENTS
 +- *(1) HashAggregate(keys=[region], functions=[partial_sum(amount)])
 +- *(1) Project [region, amount]
 +- *(1) Filter (status = 'ACTIVE')
 +- *(1) ColumnarToRow
 +- FileScan parquet [region,amount,status]

Reading bottom-up:
1. FileScan: Read parquet, only needed columns (column pruning)
2. Filter: Apply status filter (predicate pushdown to scan)
3. Project: Select region, amount
4. HashAggregate: Partial aggregation (local)
5. Exchange: Shuffle by region
6. HashAggregate: Final aggregation

3. Identifying Issues
3.1 Warning Signs
Look for these in your plan:

❌ Exchange without BroadcastExchange for small tables
 → Should use broadcast join

❌ No * prefix on operators
 → Whole-stage codegen not working

❌ FileScan reading all columns
 → Column pruning not applied

❌ Filter after Exchange
 → Predicate pushdown missed

❌ CartesianProduct
 → Missing join condition (very expensive!)

❌ Multiple Exchange operators
 → Multiple shuffles (try to reduce)
3.2 Good Signs
✅ *(n) prefix = Whole-stage codegen active
✅ BroadcastHashJoin for small table joins
✅ PushedFilters in FileScan = Predicate pushdown
✅ ReadSchema shows only needed columns
✅ PartitionFilters = Partition pruning

4. Spark UI Analysis
4.1 SQL Tab
1. View DAG visualization for each query
1. Click on stages to see details
1. Check input/output sizes at each step
1. Identify where most time is spent
4.2 Stages Tab
1. Compare task durations (look for skew)
1. Check shuffle read/write sizes
1. Monitor spill (memory) and spill (disk)
1. View task distribution across executors
4.3 Key Metrics
	Metric
	Good
	Bad

	Shuffle Read/Write
	Minimal
	Very large

	Spill (Memory)
	0
	> 0

	Spill (Disk)
	0
	> 0

	Task Duration Spread
	Even
	High variance

5. Optimization Workflow
5.1 Analysis Steps
1. Run df.explain('formatted') first
2. Look for Exchange (shuffle) operators
3. Check if small tables use BroadcastHashJoin
4. Verify PushedFilters and column pruning
5. Run query and check Spark UI
6. Analyze stage durations and task metrics
7. Iterate with optimizations
5.2 Checklist
1. ☐ Run explain() before executing
1. ☐ Verify broadcast joins for small tables
1. ☐ Check for predicate pushdown
1. ☐ Verify column pruning
1. ☐ Minimize shuffle operations
1. ☐ Check for whole-stage codegen (*)
1. ☐ Monitor Spark UI for actual execution
1. ☐ Look for skew in task durations
Appendix: Document Information
	Document Title
	Query Plan Analysis

	Version
	1.0

	Applies To
	Apache Spark 3.x (All Platforms)

Page of
