Shuffle Optimization

SHUFFLE
OPTIMIZATION

Reducing Shuffles • Configuration • AQE • Pre-partitioning

Version 1.0

Table of Contents

1. Understanding Shuffle
Shuffle is the process of redistributing data across partitions for operations like joins, groupBy, and distinct. It's one of the most expensive operations in Spark.
1.1 What Causes Shuffle
	Operation
	Shuffle Behavior

	groupBy, reduceByKey
	Shuffle by grouping key

	join (non-broadcast)
	Shuffle both sides by join key

	distinct
	Shuffle to identify duplicates

	repartition
	Full shuffle to new partitions

	orderBy (global)
	Shuffle + sort all data

1.2 Shuffle Cost
Shuffle involves:

1. Serialization of data
2. Writing to local disk (shuffle files)
3. Network transfer between executors
4. Reading and deserialization
5. Potential spill to disk if memory limited

Cost = Disk I/O + Network I/O + Serialization + Memory pressure

2. Reducing Shuffles
2.1 Use Broadcast Joins
from pyspark.sql.functions import broadcast

❌ Both tables shuffle
result = large_df.join(small_df, 'key')

✅ No shuffle - small table broadcast
result = large_df.join(broadcast(small_df), 'key')

Auto-broadcast threshold
spark.conf.set('spark.sql.autoBroadcastJoinThreshold', '100MB')
2.2 Pre-partition for Multiple Joins
If joining same key multiple times, pre-partition once
df1 = df1.repartition(200, 'customer_id').cache()
df2 = df2.repartition(200, 'customer_id').cache()

Subsequent joins avoid shuffle
result1 = df1.join(df2, 'customer_id') # No shuffle
result2 = df1.join(df3.repartition(200, 'customer_id'), 'customer_id')
2.3 Reduce Before Shuffle
❌ Bad: Full data goes through shuffle
df.groupBy('region').agg(sum('amount'))

Spark actually does partial aggregation automatically.
But ensure your transformations allow it.

✅ Filter before groupBy
df.filter(col('status') == 'ACTIVE')
 .groupBy('region').agg(sum('amount'))

3. Shuffle Configuration
3.1 Key Parameters
Number of shuffle partitions
spark.conf.set('spark.sql.shuffle.partitions', '200') # Default

For large data:
spark.conf.set('spark.sql.shuffle.partitions', '2000')

Shuffle spill settings
spark.conf.set('spark.shuffle.spill.compress', 'true')

Shuffle file buffer
spark.conf.set('spark.shuffle.file.buffer', '64k')

Compression
spark.conf.set('spark.shuffle.compress', 'true')
3.2 Sizing Shuffle Partitions
Rule of thumb:
Target partition size: 128-200 MB after shuffle

For 100 GB shuffle data:
100 GB / 200 MB = 500 partitions
spark.conf.set('spark.sql.shuffle.partitions', '500')

Too few: Large partitions, OOM risk, slow tasks
Too many: Small partitions, overhead, scheduling cost

4. Adaptive Query Execution
4.1 AQE Shuffle Optimization
Enable AQE (strongly recommended)
spark.conf.set('spark.sql.adaptive.enabled', 'true')

AQE coalesces small shuffle partitions
spark.conf.set('spark.sql.adaptive.coalescePartitions.enabled', 'true')

Target partition size for coalescing
spark.conf.set('spark.sql.adaptive.advisoryPartitionSizeInBytes', '128MB')

Minimum partition size (avoid too small)
spark.conf.set('spark.sql.adaptive.coalescePartitions.minPartitionSize', '64MB')
4.2 AQE Benefits
1. Automatically coalesces small shuffle partitions
1. Converts sort-merge join to broadcast at runtime
1. Handles skewed partitions dynamically
1. No need to manually tune shuffle.partitions
💡 With AQE, you can set a high shuffle.partitions (e.g., 1000) and let AQE coalesce down as needed.

5. Monitoring & Tuning
5.1 Spark UI Indicators
In Spark UI, check:

Stages Tab:
- Shuffle Read Size (minimize this)
- Shuffle Write Size
- Shuffle Spill (Memory) → Should be 0
- Shuffle Spill (Disk) → Should be 0

SQL Tab:
- Look for Exchange operators
- Check data sizes at each step
5.2 Optimization Checklist
1. ☐ Use broadcast for small table joins (<100 MB)
1. ☐ Filter data before shuffle operations
1. ☐ Select only needed columns before shuffle
1. ☐ Enable AQE for automatic optimization
1. ☐ Pre-partition if joining multiple times
1. ☐ Monitor shuffle spill (should be zero)
1. ☐ Set shuffle.partitions based on data size
1. ☐ Use coalesce (not repartition) to reduce partitions
Appendix: Document Information
	Document Title
	Shuffle Optimization

	Version
	1.0

	Applies To
	Apache Spark 3.x (All Platforms)

Page of
