Data Validation Framework

DATA VALIDATION
FRAMEWORK

Schema Validation • Business Rules • Quarantine • Quality Metrics

Version 1.0

Table of Contents

1. Validation Categories
1.1 Validation Types
	Category
	Examples
	Action on Failure

	Schema
	Data types, nullability
	Reject or coerce

	Format
	Date formats, patterns
	Quarantine

	Range
	Min/max values
	Flag or reject

	Referential
	Foreign key exists
	Quarantine

	Business
	Custom rules
	Flag or reject

2. Schema Validation
2.1 Enforce Schema on Read
from pyspark.sql.types import StructType, StructField, StringType, IntegerType

expected_schema = StructType([
 StructField('id', StringType(), nullable=False),
 StructField('name', StringType(), nullable=True),
 StructField('amount', IntegerType(), nullable=False),
])

Read with schema enforcement
df = spark.read.schema(expected_schema).option('mode', 'FAILFAST').json('data/')

Or use PERMISSIVE mode with corrupt record column
df = spark.read.schema(expected_schema)
 .option('mode', 'PERMISSIVE')
 .option('columnNameOfCorruptRecord', '_corrupt')
 .json('data/')
2.2 Null Validation
from pyspark.sql.functions import col, when, lit

required_columns = ['id', 'amount', 'date']

Check for nulls in required columns
null_check = df.select([
 sum(when(col(c).isNull(), 1).otherwise(0)).alias(f'{c}_nulls')
 for c in required_columns
])

Filter valid/invalid
null_condition = reduce(lambda a, b: a | b,
 [col(c).isNull() for c in required_columns])

valid_df = df.filter(~null_condition)
invalid_df = df.filter(null_condition)

3. Business Rules
3.1 Rule Definition
Define validation rules as functions
def amount_positive(df):
 return df.filter(col('amount') > 0)

def date_not_future(df):
 return df.filter(col('date') <= current_date())

def status_valid(df):
 valid_statuses = ['ACTIVE', 'PENDING', 'CLOSED']
 return df.filter(col('status').isin(valid_statuses))

Chain validations
validated_df = (df
 .transform(amount_positive)
 .transform(date_not_future)
 .transform(status_valid)
)
3.2 Validation with Flags
Add validation flags instead of filtering
validated_df = df.withColumn(
 'validation_errors',
 array_remove(array(
 when(col('amount') <= 0, lit('INVALID_AMOUNT')),
 when(col('date') > current_date(), lit('FUTURE_DATE')),
 when(~col('status').isin(['ACTIVE', 'PENDING']), lit('INVALID_STATUS'))
), None)
).withColumn(
 'is_valid',
 size(col('validation_errors')) == 0
)

4. Quarantine Pattern
4.1 Implementation
from datetime import datetime

Separate valid and invalid records
valid_df = df.filter(col('is_valid'))
quarantine_df = df.filter(~col('is_valid'))

Add quarantine metadata
quarantine_df = quarantine_df.withColumn(
 'quarantine_timestamp', lit(datetime.now())
).withColumn(
 'quarantine_reason', col('validation_errors')
)

Write to separate locations
valid_df.write.mode('append').parquet('curated/data/')
quarantine_df.write.mode('append').parquet('quarantine/data/')
4.2 Quarantine Review
Load quarantine for review
quarantine = spark.read.parquet('quarantine/data/')

Analyze failure patterns
quarantine.groupBy('quarantine_reason')
 .count()
 .orderBy(desc('count'))
 .show()

5. Quality Metrics
5.1 Metric Collection
def collect_quality_metrics(df, df_name):
 total = df.count()
 valid = df.filter(col('is_valid')).count()

 metrics = {
 'table_name': df_name,
 'total_records': total,
 'valid_records': valid,
 'invalid_records': total - valid,
 'validity_rate': valid / total if total > 0 else 0,
 'timestamp': datetime.now()
 }
 return metrics

Store metrics
metrics = collect_quality_metrics(validated_df, 'claims')
spark.createDataFrame([metrics]).write.mode('append').saveAsTable('quality.metrics')
5.2 Checklist
1. ☐ Define schema with explicit types and nullability
1. ☐ Implement business rule validations
1. ☐ Use quarantine for invalid records
1. ☐ Add validation error details
1. ☐ Collect quality metrics
1. ☐ Alert on quality degradation
Appendix: Document Information
	Document Title
	Data Validation Framework

	Version
	1.0

	Applies To
	Apache Spark 3.x (All Platforms)

Page of
