Error Handling & Recovery

ERROR HANDLING
& RECOVERY

Try/Except • Corrupt Records • Checkpointing • Retry Logic

Version 1.0

Table of Contents

1. Error Handling Patterns
1.1 Job-Level Try/Except
import logging
from datetime import datetime

log = logging.getLogger(__name__)

def run_etl_job(spark, config):
 job_id = f"job_{datetime.now().strftime('%Y%m%d_%H%M%S')}"

 try:
 log.info(f'Starting job: {job_id}')

 # Extract
 source_df = extract_data(spark, config['source_path'])

 # Transform
 transformed_df = transform_data(source_df)

 # Load
 load_data(transformed_df, config['target_path'])

 log.info(f'Job completed successfully: {job_id}')
 return {'status': 'SUCCESS', 'job_id': job_id}

 except Exception as e:
 log.error(f'Job failed: {job_id}, Error: {str(e)}')
 # Optional: Send alert
 send_alert(job_id, str(e))
 raise

2. Corrupt Record Handling
2.1 Permissive Mode
Capture corrupt records in a column
df = spark.read
 .option('mode', 'PERMISSIVE')
 .option('columnNameOfCorruptRecord', '_corrupt_record')
 .schema(expected_schema)
 .json('data/')

Separate good and bad records
good_records = df.filter(col('_corrupt_record').isNull())
bad_records = df.filter(col('_corrupt_record').isNotNull())

Write bad records for analysis
bad_records.write.mode('append').json('error_records/')
2.2 Bad Records Path
Write bad records to separate path
df = spark.read
 .option('mode', 'PERMISSIVE')
 .option('badRecordsPath', 'dbfs:/error_records/')
 .schema(expected_schema)
 .json('data/')

Bad records automatically saved with metadata
Includes: path, reason, timestamp

3. Checkpointing
3.1 DataFrame Checkpointing
Set checkpoint directory
spark.sparkContext.setCheckpointDir('checkpoint/')

Checkpoint after expensive operation
df = df.join(large_table, 'key').groupBy('region').agg(sum('amount'))

Checkpoint to break lineage (useful for iterative algorithms)
df = df.checkpoint()

Or localCheckpoint (faster, but not fault-tolerant)
df = df.localCheckpoint()
3.2 Streaming Checkpoints
For Structured Streaming
query = (df.writeStream
 .format('delta')
 .option('checkpointLocation', 'checkpoint/streaming_job/')
 .outputMode('append')
 .start('output/')
)

Checkpoint stores:
- Offsets (what's been read)
- State (for aggregations)
Enables exactly-once processing

4. Retry Logic
4.1 Simple Retry
import time
from functools import wraps

def retry(max_attempts=3, delay_seconds=60):
 def decorator(func):
 @wraps(func)
 def wrapper(*args, **kwargs):
 for attempt in range(1, max_attempts + 1):
 try:
 return func(*args, **kwargs)
 except Exception as e:
 if attempt == max_attempts:
 raise
 log.warning(f'Attempt {attempt} failed: {e}')
 time.sleep(delay_seconds)
 return wrapper
 return decorator

@retry(max_attempts=3, delay_seconds=60)
def read_with_retry(spark, path):
 return spark.read.parquet(path)
4.2 Exponential Backoff
def retry_with_backoff(func, max_attempts=5, base_delay=10):
 for attempt in range(max_attempts):
 try:
 return func()
 except Exception as e:
 if attempt == max_attempts - 1:
 raise
 delay = base_delay * (2 ** attempt) # 10, 20, 40, 80, 160
 log.warning(f'Retry in {delay}s: {e}')
 time.sleep(delay)

5. Best Practices
5.1 Checklist
1. ☐ Wrap jobs in try/except with logging
1. ☐ Use PERMISSIVE mode for data reads
1. ☐ Route bad records to error path
1. ☐ Checkpoint long lineages
1. ☐ Implement retry for transient failures
1. ☐ Set up alerts for job failures
1. ☐ Maintain job audit logs
5.2 Recovery Strategy
	Failure Type
	Recovery Approach

	Transient (network)
	Retry with backoff

	Data corruption
	Quarantine bad records, continue

	Resource exhaustion
	Scale up, optimize, retry

	Logic error
	Fix code, reprocess from checkpoint

Appendix: Document Information
	Document Title
	Error Handling & Recovery

	Version
	1.0

	Applies To
	Apache Spark 3.x (All Platforms)

Page of
