Idempotent Processing

IDEMPOTENT
PROCESSING

Rerunnable Jobs • Deduplication • Exactly-Once Semantics

Version 1.0

Table of Contents

1. Idempotency Principles
An idempotent operation produces the same result whether executed once or multiple times. This is essential for reliable data pipelines.
1.1 Why Idempotency Matters
1. Jobs may fail and need rerunning
1. Schedulers may trigger duplicate runs
1. Recovery requires safe reruns
1. Enables exactly-once processing semantics
1.2 Idempotency Patterns
	Pattern
	Description

	Delete + Insert
	Remove existing data for period, then insert

	MERGE/Upsert
	Update if exists, insert if not

	Partition Overwrite
	Overwrite only affected partitions

	Deduplication
	Remove duplicates before/after write

2. Partition Overwrite
2.1 Dynamic Partition Overwrite
Enable dynamic partition overwrite
spark.conf.set('spark.sql.sources.partitionOverwriteMode', 'dynamic')

This overwrites ONLY partitions present in the DataFrame
Other partitions remain untouched
df.write
 .mode('overwrite')
 .partitionBy('date')
 .parquet('output/')

Example:
If df contains date=2024-01-15
Only output/date=2024-01-15/ is overwritten
All other date partitions are preserved
💡 Dynamic partition overwrite makes reruns safe - only data being reprocessed is affected.

3. Merge/Upsert Pattern
3.1 Delta Lake MERGE
from delta.tables import DeltaTable

target = DeltaTable.forPath(spark, 'delta/target/')

Idempotent upsert
target.alias('t').merge(
 source_df.alias('s'),
 't.id = s.id' # Match on natural key
)
.whenMatchedUpdateAll()
.whenNotMatchedInsertAll()
.execute()

Running twice with same source produces same result
- Existing records updated (idempotent)
3.2 With Processing Date
Include processing date to identify batch
source_with_batch = source_df.withColumn(
 'processing_date', lit(processing_date)
)

MERGE ensures no duplicates
target.alias('t').merge(
 source_with_batch.alias('s'),
 't.id = s.id AND t.processing_date = s.processing_date'
)
.whenMatchedUpdateAll()
.whenNotMatchedInsertAll()
.execute()

4. Deduplication
4.1 Before Write
from pyspark.sql.window import Window
from pyspark.sql.functions import row_number, desc

Deduplicate keeping latest record
window = Window.partitionBy('id').orderBy(desc('modified_date'))

deduped_df = (df
 .withColumn('row_num', row_number().over(window))
 .filter(col('row_num') == 1)
 .drop('row_num')
)

deduped_df.write.mode('overwrite').parquet('output/')
4.2 After Write (Delta)
Use Delta's built-in deduplication
from delta.tables import DeltaTable

Find duplicates
df = spark.read.format('delta').load('delta/table/')
duplicates = df.groupBy('id').count().filter('count > 1')

Remove duplicates keeping first
dedupe_df = df.dropDuplicates(['id'])

Rewrite table
dedupe_df.write
 .format('delta')
 .mode('overwrite')
 .save('delta/table/')

5. Delete + Insert Pattern
5.1 Implementation
For a specific processing date
processing_date = '2024-01-15'

Step 1: Delete existing data for this date
target = DeltaTable.forPath(spark, 'delta/target/')
target.delete(f"processing_date = '{processing_date}'")

Step 2: Insert new data
new_data = source_df.withColumn(
 'processing_date', lit(processing_date)
)
new_data.write
 .format('delta')
 .mode('append')
 .save('delta/target/')

Rerunning deletes then reinserts - idempotent result

6. Best Practices
6.1 Checklist
1. ☐ Use dynamic partition overwrite mode
1. ☐ Prefer MERGE for upsert operations
1. ☐ Deduplicate source data before processing
1. ☐ Include batch/processing identifier
1. ☐ Design with natural keys for matching
1. ☐ Test by running job twice
1. ☐ Verify row counts after reruns
6.2 Testing Idempotency
def test_idempotency(job_function, verify_function):
 # Run once
 job_function()
 result_1 = verify_function()

 # Run again
 job_function()
 result_2 = verify_function()

 # Results should be identical
 assert result_1 == result_2, 'Job is not idempotent!'
 print('Idempotency verified ✓')
Appendix: Document Information
	Document Title
	Idempotent Processing

	Version
	1.0

	Applies To
	Apache Spark 3.x / Delta Lake

Page of
