Incremental Load Patterns

INCREMENTAL LOAD
PATTERNS

Watermarking • Change Detection • Delta Merge • CDC

Version 1.0

Table of Contents

1. Incremental Load Overview
1.1 Why Incremental?
	Full Load
	Incremental Load

	Process all data every run
	Process only changed data

	Simple but expensive
	Complex but efficient

	O(n) every time
	O(delta) per run

	Good for small datasets
	Essential for large datasets

1.2 Change Detection Methods
1. Timestamp-based: Use modified_date column
1. Version/Sequence: Use incrementing ID or version
1. Change Data Capture (CDC): Database log-based
1. Hash comparison: Compare record hashes
1. File metadata: Use file modification timestamps

2. Watermark Pattern
Track the last processed timestamp or sequence number to identify new/changed records.
2.1 Implementation
from pyspark.sql.functions import max as spark_max, lit

Step 1: Get current watermark
watermark_df = spark.read.table('control.watermarks')
last_watermark = watermark_df.filter(
 col('table_name') == 'source_table'
).select('watermark_value').collect()[0][0]

Step 2: Read incremental data
incremental_df = (
 spark.read.parquet('source/')
 .filter(col('modified_date') > last_watermark)
)

Step 3: Process data
processed_df = transform(incremental_df)

Step 4: Write to target
processed_df.write.mode('append').parquet('target/')

Step 5: Update watermark
new_watermark = incremental_df.agg(spark_max('modified_date')).collect()[0][0]
spark.sql(f'''
 UPDATE control.watermarks
 SET watermark_value = '{new_watermark}'
 WHERE table_name = 'source_table'
''')

3. Delta Lake Merge
Delta Lake MERGE provides upsert capability for efficient incremental updates.
3.1 Basic Merge Pattern
from delta.tables import DeltaTable

Load target Delta table
target = DeltaTable.forPath(spark, 'delta/customers/')

Incremental source data
source_df = spark.read.parquet('staging/customers_incremental/')

Merge (upsert)
target.alias('target').merge(
 source_df.alias('source'),
 'target.customer_id = source.customer_id'
).whenMatchedUpdateAll()
 .whenNotMatchedInsertAll()
 .execute()
3.2 Merge with Conditions
target.alias('t').merge(
 source_df.alias('s'),
 't.id = s.id'
).whenMatchedUpdate(
 condition='s.modified_date > t.modified_date',
 set={
 'name': 's.name',
 'amount': 's.amount',
 'modified_date': 's.modified_date'
 }
).whenNotMatchedInsert(
 values={
 'id': 's.id',
 'name': 's.name',
 'amount': 's.amount',
 'modified_date': 's.modified_date'
 }
).execute()

4. CDC Processing
4.1 CDC Record Types
	Operation
	Code
	Action

	Insert
	I or +
	Add new record

	Update
	U or ~
	Modify existing record

	Delete
	D or -
	Remove record

4.2 CDC Merge Pattern
CDC source with operation column
cdc_df = spark.read.parquet('cdc/changes/')

target.alias('t').merge(
 cdc_df.alias('s'),
 't.id = s.id'
).whenMatchedUpdate(
 condition="s.operation = 'U'",
 set={'name': 's.name', 'amount': 's.amount'}
).whenMatchedDelete(
 condition="s.operation = 'D'"
).whenNotMatchedInsert(
 condition="s.operation = 'I'",
 values={'id': 's.id', 'name': 's.name', 'amount': 's.amount'}
).execute()

5. Best Practices
5.1 Implementation Checklist
1. ☐ Identify reliable change detection column
1. ☐ Create watermark control table
1. ☐ Handle late-arriving data
1. ☐ Implement idempotent processing
1. ☐ Add data validation before merge
1. ☐ Log processing statistics
1. ☐ Monitor for data drift
5.2 Error Handling
try:
 # Process incremental data
 process_incremental(source, target)
 # Update watermark only on success
 update_watermark(new_watermark)
except Exception as e:
 # Log error, don't update watermark
 log.error(f'Incremental load failed: {e}')
 # Watermark unchanged = retry same data next run
 raise
Appendix: Document Information
	Document Title
	Incremental Load Patterns

	Version
	1.0

	Applies To
	Apache Spark 3.x / Delta Lake

Page of
