SCD Implementation Guide

SCD IMPLEMENTATION
GUIDE

Type 1 • Type 2 • Type 3 • Delta Lake SCD

Version 1.0

Table of Contents

1. SCD Type Overview
1.1 Comparison
	Type
	History
	Method
	Use Case

	Type 1
	No history
	Overwrite
	Corrections

	Type 2
	Full history
	New row + flags
	Audit trail

	Type 3
	Limited history
	Previous column
	Quick compare

2. SCD Type 1 (Overwrite)
Simply overwrites existing values. No history is maintained.
2.1 Implementation
from delta.tables import DeltaTable

target = DeltaTable.forPath(spark, 'delta/dim_customer/')

SCD Type 1: Just update in place
target.alias('t').merge(
 source_df.alias('s'),
 't.customer_id = s.customer_id'
).whenMatchedUpdate(set={
 'name': 's.name',
 'email': 's.email',
 'address': 's.address',
 'updated_date': 'current_timestamp()'
}).whenNotMatchedInsertAll()
.execute()

3. SCD Type 2 (History)
Maintains full history with effective dates and current flags.
3.1 Table Structure
SCD Type 2 dimension table columns:
- surrogate_key (INT): Generated unique key
- business_key (STRING): Natural key from source
- attributes... : Dimension attributes
- effective_start (DATE): Row validity start
- effective_end (DATE): Row validity end (9999-12-31 if current)
- is_current (BOOLEAN): True for active row
- version (INT): Version number for this business key
3.2 Delta Lake SCD Type 2
from pyspark.sql.functions import current_date, lit, when, col
from delta.tables import DeltaTable

Load target
target = DeltaTable.forPath(spark, 'delta/dim_customer/')
target_df = target.toDF()

Find changed records
changes = source_df.alias('s').join(
 target_df.filter(col('is_current')).alias('t'),
 'customer_id', 'left'
).filter(
 (col('t.customer_id').isNull()) | # New
 (col('s.name') != col('t.name')) | # Changed
 (col('s.address') != col('t.address'))
)

Step 1: Expire old current records
target.alias('t').merge(
 changes.select('customer_id').distinct().alias('s'),
 't.customer_id = s.customer_id AND t.is_current = true'
).whenMatchedUpdate(set={
 'is_current': lit(False),
 'effective_end': current_date()
}).execute()

Step 2: Insert new current records
new_records = changes.select(
 col('s.customer_id'),
 col('s.name'),
 col('s.address'),
 current_date().alias('effective_start'),
 lit('9999-12-31').cast('date').alias('effective_end'),
 lit(True).alias('is_current')
)
new_records.write.mode('append').format('delta').save('delta/dim_customer/')

4. SCD Type 3 (Previous Value)
Stores previous value in a separate column. Limited history (typically one prior value).
4.1 Implementation
SCD Type 3: Track previous value
target.alias('t').merge(
 source_df.alias('s'),
 't.customer_id = s.customer_id'
).whenMatchedUpdate(
 condition='s.address != t.address',
 set={
 'previous_address': 't.address', # Save old value
 'address': 's.address', # Update to new
 'address_change_date': 'current_date()'
 }
).whenNotMatchedInsert(
 values={
 'customer_id': 's.customer_id',
 'address': 's.address',
 'previous_address': lit(None),
 'address_change_date': lit(None)
 }
).execute()

5. Best Practices
5.1 Choosing SCD Type
	Requirement
	Recommended SCD Type

	No history needed, corrections only
	Type 1

	Full audit trail required
	Type 2

	Track one previous value
	Type 3

	Both current and history queries
	Type 2 with is_current flag

5.2 Checklist
1. ☐ Determine history requirements
1. ☐ Design surrogate keys for Type 2
1. ☐ Index on business key + is_current
1. ☐ Use Delta Lake for ACID transactions
1. ☐ Test with edge cases (same-day updates)
1. ☐ Document effective date conventions
Appendix: Document Information
	Document Title
	SCD Implementation Guide

	Version
	1.0

	Applies To
	Apache Spark 3.x / Delta Lake

Page of
