Integration Testing Patterns

INTEGRATION TESTING
PATTERNS

End-to-End Tests • Test Fixtures • Validation • CI/CD

Version 1.0

Table of Contents

1. Integration Test Strategy
1.1 Test Scope
	Type
	Scope
	Purpose

	Unit
	Single function
	Logic correctness

	Integration
	Multiple components
	Component interaction

	End-to-End
	Full pipeline
	System behavior

1.2 What to Test
1. Data flows between stages correctly
1. Schema evolution is handled
1. Error handling works as expected
1. Output matches expected structure
1. Performance meets requirements

2. Test Fixtures
2.1 Sample Data Setup
tests/conftest.py
import pytest
import tempfile
import shutil

@pytest.fixture(scope='module')
def test_data_path(spark):
 """Create temp directory with test data."""
 temp_dir = tempfile.mkdtemp()

 # Create test data
 customers = spark.createDataFrame([
 ('C001', 'John Doe', 'active'),
 ('C002', 'Jane Smith', 'active'),
 ('C003', 'Bob Wilson', 'inactive'),
], ['id', 'name', 'status'])

 orders = spark.createDataFrame([
 ('O001', 'C001', 100.0),
 ('O002', 'C001', 200.0),
 ('O003', 'C002', 150.0),
], ['order_id', 'customer_id', 'amount'])

 # Write to temp location
 customers.write.parquet(f'{temp_dir}/customers')
 orders.write.parquet(f'{temp_dir}/orders')

 yield temp_dir

 # Cleanup
 shutil.rmtree(temp_dir)

3. End-to-End Tests
3.1 Pipeline Test
def test_customer_order_pipeline(spark, test_data_path):
 """Test complete ETL pipeline."""
 # Run pipeline
 output_path = f'{test_data_path}/output'
 run_customer_orders_etl(
 spark,
 customers_path=f'{test_data_path}/customers',
 orders_path=f'{test_data_path}/orders',
 output_path=output_path
)

 # Verify output
 result = spark.read.parquet(output_path)

 # Check row count
 assert result.count() == 2 # Only active customers

 # Check schema
 expected_cols = ['customer_id', 'name', 'total_orders']
 assert result.columns == expected_cols

 # Check aggregation
 john = result.filter(col('name') == 'John Doe').collect()[0]
 assert john.total_orders == 300.0

4. Validation Patterns
4.1 Schema Validation
def validate_output_schema(df, expected_schema):
 """Validate DataFrame matches expected schema."""
 actual_fields = {f.name: f.dataType for f in df.schema.fields}
 expected_fields = {f.name: f.dataType for f in expected_schema.fields}

 missing = set(expected_fields) - set(actual_fields)
 extra = set(actual_fields) - set(expected_fields)

 assert not missing, f'Missing columns: {missing}'
 assert not extra, f'Unexpected columns: {extra}'
4.2 Data Quality Assertions
def assert_no_nulls(df, columns):
 """Assert no null values in specified columns."""
 for col_name in columns:
 null_count = df.filter(col(col_name).isNull()).count()
 assert null_count == 0, f'{col_name} has {null_count} nulls'

def assert_unique(df, columns):
 """Assert unique values for given columns."""
 total = df.count()
 distinct = df.select(columns).distinct().count()
 assert total == distinct, f'Duplicate records found'

5. CI/CD Integration
5.1 GitHub Actions Example
.github/workflows/test.yml
name: PySpark Tests

on: [push, pull_request]

jobs:
 test:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v3
 - uses: actions/setup-python@v4
 with:
 python-version: '3.10'
 - uses: actions/setup-java@v3
 with:
 distribution: 'temurin'
 java-version: '11'
 - run: pip install -r requirements-test.txt
 - run: pytest tests/ -v --junitxml=results.xml
5.2 Checklist
1. ☐ Create isolated test data fixtures
1. ☐ Test full pipeline end-to-end
1. ☐ Validate schemas and data quality
1. ☐ Clean up temp resources after tests
1. ☐ Run tests in CI/CD pipeline
1. ☐ Monitor test coverage
Appendix: Document Information
	Document Title
	Integration Testing Patterns

	Version
	1.0

	Applies To
	Apache Spark 3.x (All Platforms)

Page of
