Logging & Observability

LOGGING &
OBSERVABILITY

Log4j • Metrics • Custom Listeners • Monitoring

Version 1.0

Table of Contents

1. Spark Logging
1.1 Log Levels
Set log level programmatically
spark.sparkContext.setLogLevel('WARN')

Levels: ALL, DEBUG, INFO, WARN, ERROR, FATAL, OFF
Use WARN for production, DEBUG for troubleshooting
1.2 Log4j Configuration
log4j2.properties
rootLogger.level = WARN
rootLogger.appenderRef.stdout.ref = console

appender.console.type = Console
appender.console.name = console
appender.console.layout.type = PatternLayout
appender.console.layout.pattern = %d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n

2. Application Logging
2.1 Python Logging
import logging

logging.basicConfig(level=logging.INFO)
log = logging.getLogger(__name__)

def process_data(df):
 log.info(f'Processing {df.count()} records')
 result = transform(df)
 log.info(f'Output: {result.count()} records')
 return result
2.2 Best Practices
1. Log at job start/end with counts
1. Log partition counts for debugging
1. Include job identifiers for tracing
1. Use structured logging (JSON) for parsing

3. Metrics & Monitoring
3.1 Key Metrics
	Metric
	Purpose

	executor.memoryUsed
	Memory consumption per executor

	executor.diskBytesSpilled
	Disk spill (should be 0)

	stage.shuffleBytesWritten
	Shuffle data size

	executor.jvmGCTime
	GC overhead

3.2 Checklist
1. ☐ Set appropriate log level (WARN for prod)
1. ☐ Log job start/end with metrics
1. ☐ Monitor executor memory and GC
1. ☐ Alert on job failures
1. ☐ Track job duration trends
Appendix: Document Information
	Document Title
	Logging & Observability

	Version
	1.0

	Applies To
	Apache Spark 3.x (All Platforms)

Page of
