Troubleshooting Playbook

TROUBLESHOOTING
PLAYBOOK

OOM • Slow Jobs • Skew • Spill • Shuffle Issues

Version 1.0

Table of Contents

1. Out of Memory (OOM)
1.1 Symptoms
1. java.lang.OutOfMemoryError: Java heap space
1. Container killed by YARN for exceeding memory limits
1. Executor lost
1. GC overhead limit exceeded
1.2 Solutions
Driver OOM:
 → Increase: spark.driver.memory
 → Avoid: collect() on large datasets
 → Reduce: Broadcast variable sizes

Executor OOM:
 → Increase: spark.executor.memory
 → Increase: spark.executor.memoryOverhead
 → Reduce: spark.executor.cores (fewer concurrent tasks)
 → Increase: spark.sql.shuffle.partitions

Specific fixes:
 → spark.memory.fraction = 0.6 → 0.7
 → spark.sql.autoBroadcastJoinThreshold = -1 (disable)

2. Slow Jobs
2.1 Diagnosis
Check Spark UI:
1. Which stage is slowest?
2. Are tasks evenly distributed? (median vs max)
3. Is there spill?
4. How much shuffle data?
5. What's the GC time?
2.2 Solutions by Cause
	Cause
	Solution

	Data skew
	Enable AQE, use salting

	Too few partitions
	Increase shuffle.partitions

	Too many partitions
	Coalesce or enable AQE coalescing

	Large shuffle
	Use broadcast joins, filter early

	Expensive UDFs
	Replace with built-in functions

	Missing predicate pushdown
	Check query plan, use partitioned data

3. Data Skew
3.1 Detection
In Spark UI Stages tab:
- Median task time: 10 seconds
- Max task time: 10 minutes ← SKEW!

Or programmatically:
df.groupBy('key').count().orderBy(desc('count')).show()
Look for keys with >> average count
3.2 Solutions
1. Enable AQE (first try):
 spark.sql.adaptive.enabled = true
 spark.sql.adaptive.skewJoin.enabled = true

2. Increase partitions:
 spark.sql.shuffle.partitions = 1000

3. Salting (for persistent skew):
 - Add random salt to skewed key
 - Replicate small table with all salts

4. Isolate hot keys:
 - Process hot keys with broadcast join
 - Process normal keys with regular join

4. Spill Issues
4.1 What is Spill
Spill occurs when data exceeds memory during shuffle/aggregation and must be written to disk.
4.2 Solutions
Reduce data per task:
 → Increase spark.sql.shuffle.partitions

Increase memory:
 → Increase spark.executor.memory
 → Increase spark.memory.fraction

Optimize operations:
 → Filter data earlier
 → Use broadcast joins
 → Reduce columns before shuffle

5. Shuffle Issues
5.1 Large Shuffle
Symptoms: Slow shuffle read, network bottlenecks

Solutions:
 → Filter before groupBy/join
 → Select only needed columns
 → Use broadcast for small tables
 → Pre-partition for repeated joins
 → Enable shuffle compression
5.2 Quick Reference
	Issue
	First Action

	OOM
	Increase executor.memory and memoryOverhead

	Slow job
	Check Spark UI for skew/spill

	Skew
	Enable AQE skew join optimization

	Spill
	Increase partitions or memory

	Shuffle too large
	Filter early, broadcast small tables

Appendix: Document Information
	Document Title
	Troubleshooting Playbook

	Version
	1.0

	Applies To
	Apache Spark 3.x (All Platforms)

Page of
