Data Reconciliation Framework

DATA RECONCILIATION
FRAMEWORK

Automated Verification of Legacy vs Modern Data Outputs

Version 1.0 | Confidential

Table of Contents

1. Overview
The Data Reconciliation Framework provides automated tools for comparing data outputs between legacy SAS/Informatica/SSIS systems and modern PySpark/Fabric implementations. This is the core mechanism for proving conversion correctness.
1.1 Framework Principles
1. Automated: Minimize manual comparison effort
1. Comprehensive: Compare all columns, all rows when feasible
1. Tolerant: Handle acceptable differences (floating point, timestamps)
1. Traceable: Log all comparisons and discrepancies
1. Scalable: Handle datasets from thousands to billions of rows

2. Comparison Methods
2.1 Method Selection Matrix
	Data Size
	Method
	Speed
	Detail Level

	< 100K rows
	Row-by-Row
	Fast
	Full column comparison

	100K - 10M rows
	Hash + Sample
	Medium
	Hash verify + sample

	10M - 100M rows
	Aggregate + Hash
	Fast
	Key aggregates + hash

	> 100M rows
	Statistical
	Fast
	Distribution comparison

2.2 Row-by-Row Comparison
def compare_datasets_row_by_row(legacy_df, modern_df, key_cols, compare_cols):
 """Compare two DataFrames row-by-row."""

 joined = legacy_df.alias('legacy').join(
 modern_df.alias('modern'),
 on=key_cols,
 how='full_outer'
)

 # Compare each column
 for col_name in compare_cols:
 joined = joined.withColumn(
 f'{col_name}_match',
 when(
 col(f'legacy.{col_name}') == col(f'modern.{col_name}'),
 lit(True)
).otherwise(lit(False))
)

 return joined

2.3 Hash-Based Comparison
from pyspark.sql.functions import concat_ws, md5

def compare_by_hash(legacy_df, modern_df, key_cols, hash_cols):
 """Compare datasets using row hashes."""

 def add_hash(df):
 return df.withColumn(
 'row_hash',
 md5(concat_ws('|', *[col(c).cast('string') for c in hash_cols]))
)

 legacy_hashed = add_hash(legacy_df)
 modern_hashed = add_hash(modern_df)

 # Find mismatches
 mismatches = legacy_hashed.join(
 modern_hashed, on=key_cols, how='full_outer'
).filter(col('legacy.row_hash') != col('modern.row_hash'))

 return mismatches

3. Tolerance Handling
3.1 Acceptable Differences
	Data Type
	Tolerance
	Rationale

	Integer
	Exact (0)
	No acceptable difference

	Decimal (Money)
	0.01
	Penny-level precision

	Float/Double
	0.0001 (0.01%)
	Floating point representation

	Date
	Exact
	No acceptable difference

	Timestamp
	1 second
	Execution time differences

	String
	Whitespace trim
	Trailing space handling differs

4. Reconciliation Report
RECONCILIATION REPORT
==
Job: monthly_claims_summary
Date: 2025-01-15 14:30:00

SUMMARY
--
Legacy Row Count: 1,234,567
Modern Row Count: 1,234,567
Row Count Match: PASS

AGGREGATE COMPARISON
--
Metric Legacy Modern Diff
total_claims $45,678,901.23 $45,678,901.23 $0.00
avg_claim $36.98 $36.98 $0.00

DETAIL COMPARISON
--
Rows Compared: 1,234,567
Exact Matches: 1,234,560 (99.9994%)
Within Tolerance: 7
Mismatches: 0

RESULT: PASS
==
Appendix: Document Information
	Document Title
	Data Reconciliation Framework

	Version
	1.0

	Classification
	Confidential

	Last Updated
	January 2025

Page of
