Migration Testing Strategy

MIGRATION TESTING
STRATEGY

Comprehensive Test Approach for Legacy Code Conversion

Version 1.0 | Confidential

Table of Contents

1. Executive Summary
Migration testing differs fundamentally from traditional software testing. The goal is not to verify new functionality, but to prove that converted code produces identical results to the legacy system. This strategy defines the multi-layered approach to achieving that proof.
1.1 Testing Objectives
1. Functional Equivalence: Converted code produces same outputs as legacy
1. Data Integrity: All data transformations match exactly
1. Performance Parity: Execution time meets or exceeds legacy performance
1. Error Handling: Edge cases and exceptions handled consistently
1. Regression Prevention: Changes dont break previously working conversions
1.2 Testing Pyramid for Migration
 /\
 / \ UAT / Business Validation
 / \ (Business users verify outputs)
 /------\
 / \ DATA RECONCILIATION
 / \ (Full output comparison)
 /------------\
 / \ INTEGRATION TESTS
 / \ (End-to-end pipeline)
 /------------------\
 / \ UNIT TESTS
 /______________________(Individual functions)

2. Test Levels
2.1 Level Overview
	Level
	Scope
	Executor
	Automation

	Unit
	Single function/transform
	Developer
	100% automated

	Integration
	End-to-end pipeline
	QA/Developer
	90% automated

	Reconciliation
	Full data comparison
	QA Team
	95% automated

	Performance
	Execution benchmarks
	Performance Team
	Automated

	UAT
	Business validation
	Business SMEs
	Manual + tools

2.2 Unit Testing
Unit tests verify individual functions and transformations in isolation.
2.2.1 Unit Test Requirements
1. Every converted function must have corresponding unit tests
1. Test coverage target: 80% line coverage minimum
1. Tests must cover: normal cases, edge cases, null handling, error conditions
1. Tests run automatically on every code commit
2.2.2 Unit Test Example
import pytest
from transforms.claims_filter import filter_paid_claims

class TestFilterPaidClaims:
 def test_filters_paid_status(self, spark):
 input_df = spark.createDataFrame([
 ('C001', 'PAID', 100.0),
 ('C002', 'DENIED', 50.0),
], ['claim_id', 'status', 'amount'])

 result = filter_paid_claims(input_df)
 assert result.count() == 1

2.3 Data Reconciliation
The most critical test level - proving output equivalence between legacy and modern systems.
2.3.1 Reconciliation Types
	Type
	Method
	Use Case

	Row Count
	COUNT(*) comparison
	Basic sanity check

	Aggregate Sum
	SUM(amount) by key columns
	Financial data validation

	Hash Comparison
	MD5/SHA hash of sorted rows
	Large dataset verification

	Row-by-Row
	Join and compare all columns
	Detailed discrepancy analysis

	Statistical
	Distribution comparison
	Floating point tolerance

3. Test Environments
3.1 Environment Strategy
	Environment
	Purpose
	Data
	Refresh

	DEV
	Developer testing
	Synthetic sample
	On demand

	SIT
	Integration testing
	Masked prod subset
	Weekly

	RECON
	Data reconciliation
	Full production copy
	Per test cycle

	UAT
	Business validation
	Production-like
	Per UAT cycle

4. Test Execution Workflow
1. UNIT TEST (Developer)
 - Write unit tests, achieve 80% coverage
 - All tests pass -> Commit to branch

2. INTEGRATION TEST (Automated CI/CD)
 - Run integration test suite on commit
 - Pass -> Ready for reconciliation

3. DATA RECONCILIATION (QA)
 - Execute legacy and modern in parallel
 - Compare outputs, 100% match required

4. CODE REVIEW (Tech Lead)
 - Review code quality and patterns
 - Approve -> Merge to main

Appendix: Document Information
	Document Title
	Migration Testing Strategy

	Version
	1.0

	Classification
	Confidential

	Last Updated
	January 2025

Page of
