Performance Benchmarking Guide

PERFORMANCE
BENCHMARKING GUIDE

Ensuring Converted Code Meets Performance Requirements

Version 1.0 | Confidential

Table of Contents

1. Overview
Performance benchmarking validates that converted PySpark code meets or exceeds the performance of legacy SAS/Informatica/SSIS implementations. This guide defines the methodology for measuring, comparing, and optimizing performance.
1.1 Performance Goals
1. Parity: Converted code runs in equal or less time than legacy
1. Scalability: Performance scales linearly with data volume
1. Resource Efficiency: Optimal use of cluster resources
1. Consistency: Predictable execution times across runs
1. SLA Compliance: Meet production job scheduling windows

2. Benchmarking Methodology
2.1 Test Conditions
	Factor
	Requirement

	Data Volume
	Use production-equivalent data sizes

	Cluster Config
	Document exact cluster size and configuration

	Isolation
	Run benchmarks on dedicated resources when possible

	Warm-up
	Execute 1-2 warm-up runs before measurement

	Repetition
	Run each benchmark 3-5 times, report median

	Monitoring
	Capture CPU, memory, I/O during execution

2.2 Metrics to Capture
	Metric
	How to Measure
	Target

	Wall Clock Time
	End time - Start time
	<= Legacy time

	CPU Utilization
	Spark UI / Ganglia
	70-90% average

	Memory Usage
	Spark UI executors tab
	No spill to disk

	Shuffle Size
	Spark UI stages tab
	Minimize shuffles

	I/O Throughput
	Bytes read/written per second
	Maximize utilization

3. Benchmark Implementation
3.1 Benchmark Harness
import time
from dataclasses import dataclass
from typing import Callable, List

@dataclass
class BenchmarkResult:
 job_name: str
 execution_times: List[float]
 rows_processed: int

 @property
 def median_time(self) -> float:
 sorted_times = sorted(self.execution_times)
 mid = len(sorted_times) // 2
 return sorted_times[mid]

 @property
 def throughput(self) -> float:
 return self.rows_processed / self.median_time

def run_benchmark(job_func: Callable, runs: int = 5) -> BenchmarkResult:
 times = []
 rows = 0

 for i in range(runs):
 start = time.time()
 result_df = job_func()
 rows = result_df.count() # Force execution
 end = time.time()
 times.append(end - start)

 return BenchmarkResult(job_func.__name__, times, rows)

3.2 Comparison Report
PERFORMANCE COMPARISON REPORT
==
Job: daily_claims_aggregation
Data Volume: 50,000,000 rows

EXECUTION TIME
--
System Median (s) Min (s) Max (s) Variance
Legacy SAS 342.5 338.2 351.8 0.04
Modern PySpark 198.3 195.1 203.7 0.04

Improvement: 42.1% faster

RESOURCE UTILIZATION (Modern)
--
CPU Utilization: 78%
Memory Peak: 12.4 GB / 16 GB
Shuffle Write: 2.3 GB

STATUS: PASS - Meets performance requirements
==

4. Optimization Strategies
4.1 Common Performance Issues
	Issue
	Symptom
	Solution

	Data Skew
	Some tasks much slower
	Salting, repartition

	Excessive Shuffle
	High shuffle read/write
	Broadcast joins, coalesce

	Memory Spill
	Spill metrics > 0
	Increase memory, reduce parallelism

	Small Files
	Many small tasks
	Coalesce output, compact files

	UDF Overhead
	Slow Python execution
	Use built-in functions

Appendix: Document Information
	Document Title
	Performance Benchmarking Guide

	Version
	1.0

	Classification
	Confidential

	Last Updated
	January 2025

Page of
