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1. Overview
Performance benchmarking validates that converted PySpark code meets or exceeds the performance of legacy SAS/Informatica/SSIS implementations. This guide defines the methodology for measuring, comparing, and optimizing performance.
1.1 Performance Goals
1. Parity: Converted code runs in equal or less time than legacy
1. Scalability: Performance scales linearly with data volume
1. Resource Efficiency: Optimal use of cluster resources
1. Consistency: Predictable execution times across runs
1. SLA Compliance: Meet production job scheduling windows


2. Benchmarking Methodology
2.1 Test Conditions
	Factor
	Requirement

	Data Volume
	Use production-equivalent data sizes

	Cluster Config
	Document exact cluster size and configuration

	Isolation
	Run benchmarks on dedicated resources when possible

	Warm-up
	Execute 1-2 warm-up runs before measurement

	Repetition
	Run each benchmark 3-5 times, report median

	Monitoring
	Capture CPU, memory, I/O during execution



2.2 Metrics to Capture
	Metric
	How to Measure
	Target

	Wall Clock Time
	End time - Start time
	<= Legacy time

	CPU Utilization
	Spark UI / Ganglia
	70-90% average

	Memory Usage
	Spark UI executors tab
	No spill to disk

	Shuffle Size
	Spark UI stages tab
	Minimize shuffles

	I/O Throughput
	Bytes read/written per second
	Maximize utilization





3. Benchmark Implementation
3.1 Benchmark Harness
import time
from dataclasses import dataclass
from typing import Callable, List

@dataclass
class BenchmarkResult:
    job_name: str
    execution_times: List[float]
    rows_processed: int
    
    @property
    def median_time(self) -> float:
        sorted_times = sorted(self.execution_times)
        mid = len(sorted_times) // 2
        return sorted_times[mid]
    
    @property
    def throughput(self) -> float:
        return self.rows_processed / self.median_time

def run_benchmark(job_func: Callable, runs: int = 5) -> BenchmarkResult:
    times = []
    rows = 0
    
    for i in range(runs):
        start = time.time()
        result_df = job_func()
        rows = result_df.count()  # Force execution
        end = time.time()
        times.append(end - start)
    
    return BenchmarkResult(job_func.__name__, times, rows)

3.2 Comparison Report
PERFORMANCE COMPARISON REPORT
============================================================
Job: daily_claims_aggregation
Data Volume: 50,000,000 rows

EXECUTION TIME
------------------------------------------------------------
System          Median (s)    Min (s)    Max (s)    Variance
Legacy SAS      342.5         338.2      351.8      0.04
Modern PySpark  198.3         195.1      203.7      0.04

Improvement: 42.1% faster

RESOURCE UTILIZATION (Modern)
------------------------------------------------------------
CPU Utilization:     78%
Memory Peak:         12.4 GB / 16 GB
Shuffle Write:       2.3 GB

STATUS: PASS - Meets performance requirements
============================================================


4. Optimization Strategies
4.1 Common Performance Issues
	Issue
	Symptom
	Solution

	Data Skew
	Some tasks much slower
	Salting, repartition

	Excessive Shuffle
	High shuffle read/write
	Broadcast joins, coalesce

	Memory Spill
	Spill metrics > 0
	Increase memory, reduce parallelism

	Small Files
	Many small tasks
	Coalesce output, compact files

	UDF Overhead
	Slow Python execution
	Use built-in functions
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