Unit Test Templates

UNIT TEST
TEMPLATES

Pytest Patterns for PySpark Code Conversion Testing

Version 1.0 | Confidential

Table of Contents

1. Overview
This document provides standardized pytest templates for unit testing converted PySpark code. These templates ensure consistent testing practices across all conversion workstreams.
1.1 Testing Principles
1. Every conversion must have corresponding unit tests
1. Tests are written BEFORE or DURING conversion, not after
1. Test cases derived from legacy code behavior analysis
1. Minimum 80% line coverage required
1. Tests must be deterministic and repeatable

2. Test Fixtures
2.1 Spark Session Fixture
conftest.py
import pytest
from pyspark.sql import SparkSession

@pytest.fixture(scope='session')
def spark():
 """Create a SparkSession for testing."""
 spark = SparkSession.builder \
 .master('local[2]') \
 .appName('unit-tests') \
 .config('spark.sql.shuffle.partitions', '2') \
 .config('spark.default.parallelism', '2') \
 .config('spark.sql.session.timeZone', 'UTC') \
 .getOrCreate()

 yield spark
 spark.stop()

2.2 Sample Data Fixtures
@pytest.fixture
def sample_claims(spark):
 """Create sample claims DataFrame for testing."""
 return spark.createDataFrame([
 ('CLM001', 'M001', 'P001', '2024-01-15', 'PAID', 150.00),
 ('CLM002', 'M001', 'P002', '2024-01-16', 'DENIED', 200.00),
 ('CLM003', 'M002', 'P001', '2024-01-17', 'PENDING', 175.50),
 ('CLM004', 'M002', 'P003', '2024-01-18', 'PAID', 300.00),
 ('CLM005', 'M003', 'P001', '2024-01-19', 'PAID', None),
], ['claim_id', 'member_id', 'provider_id', 'service_date', 'status', 'amount'])

3. Test Templates
3.1 Filter Transformation Test
class TestClaimsFilter:
 """Tests for claims filtering transformations."""

 def test_filter_paid_claims(self, spark, sample_claims):
 """Verify only PAID status claims are returned."""
 from transforms.claims import filter_paid_claims

 result = filter_paid_claims(sample_claims)

 assert result.count() == 3
 statuses = [row.status for row in result.collect()]
 assert all(s == 'PAID' for s in statuses)

 def test_filter_preserves_columns(self, spark, sample_claims):
 """Verify all columns are preserved after filter."""
 from transforms.claims import filter_paid_claims

 result = filter_paid_claims(sample_claims)

 assert result.columns == sample_claims.columns

3.2 Aggregation Test
class TestClaimsAggregation:
 """Tests for claims aggregation transformations."""

 def test_sum_by_member(self, spark, sample_claims):
 """Verify correct sum calculation by member."""
 from transforms.claims import sum_claims_by_member

 result = sum_claims_by_member(sample_claims)

 m001 = result.filter(col('member_id') == 'M001').first()
 assert m001.total_amount == 350.00

 def test_handles_null_amounts(self, spark, sample_claims):
 """Verify null amounts are handled correctly."""
 from transforms.claims import sum_claims_by_member

 result = sum_claims_by_member(sample_claims)

 # M003 has one claim with null amount
 m003 = result.filter(col('member_id') == 'M003').first()
 assert m003.total_amount is None or m003.total_amount == 0

3.3 Window Function Test
class TestWindowFunctions:
 """Tests for window function transformations."""

 def test_running_total(self, spark, sample_claims):
 """Verify running total calculation."""
 from transforms.claims import add_running_total

 result = add_running_total(sample_claims, 'member_id', 'amount')

 # Check running total for member M001
 m001_rows = result.filter(col('member_id') == 'M001') \
 .orderBy('service_date').collect()

 assert m001_rows[0].running_total == 150.00
 assert m001_rows[1].running_total == 350.00

 def test_row_number(self, spark, sample_claims):
 """Verify row numbering within partition."""
 from transforms.claims import add_row_number

 result = add_row_number(sample_claims, 'member_id')

 # Each member should have sequential row numbers
 m001_rows = result.filter(col('member_id') == 'M001').collect()
 row_nums = sorted([r.row_num for r in m001_rows])
 assert row_nums == [1, 2]

4. Test Coverage Requirements
	Test Category
	Required
	Measured By

	Line Coverage
	>= 80%
	pytest-cov

	Branch Coverage
	>= 70%
	pytest-cov

	Null Handling
	100%
	Manual review

	Edge Cases
	100%
	Manual review

Appendix: Document Information
	Document Title
	Unit Test Templates

	Version
	1.0

	Classification
	Confidential

	Last Updated
	January 2025

Page of
