Snowflake Architecture & Platform Overview
Document InformationFieldValueVersion1.0Last Updated2025-01-29ClassificationInternal UseOwnerData Platform Team
1. Executive Summary
This guide provides a comprehensive overview of Snowflake's cloud data platform architecture, including its unique multi-cluster shared data architecture, compute and storage separation, and key platform capabilities. Understanding Snowflake's architecture is essential for designing scalable, cost-effective data solutions.
What Makes Snowflake Different?
Snowflake is a cloud-native data platform built from the ground up for the cloud. Unlike traditional data warehouses that were retrofitted for cloud deployment, Snowflake was designed to leverage cloud infrastructure's elasticity, scalability, and pay-per-use pricing. Key differentiators include:
True Separation of Storage and Compute: Scale each independently based on needs
Multi-Cluster Shared Data: Multiple compute clusters can access the same data simultaneously
Zero Management: No infrastructure to manage, tune, or maintain
Near-Zero Maintenance: Automatic optimization, updates, and scaling
Cross-Cloud Availability: Available on AWS, Azure, and GCP with data sharing across clouds
2. Snowflake Architecture
2.1 Three-Layer Architecture
Snowflake's architecture consists of three independent layers that can scale independently:
┌───┐
│ SNOWFLAKE ARCHITECTURE │
├───┤
│ │
│ ┌───┐ │
│ │ CLOUD SERVICES LAYER │ │
│ │ (The "Brain" of Snowflake) │ │
│ │ │ │
│ │ ┌───────────┐ ┌───────────┐ ┌───────────┐ ┌───────────┐ │ │
│ │ │ Query │ │ Security │ │ Metadata │ │Transaction│ │ │
│ │ │ Parsing │ │ & Access │ │ Management│ │ Management│ │ │
│ │ │& Optimize │ │ Control │ │ │ │ │ │ │
│ │ └───────────┘ └───────────┘ └───────────┘ └───────────┘ │ │
│ │ ┌───────────┐ ┌───────────┐ ┌───────────┐ ┌───────────┐ │ │
│ │ │ Result │ │ Virtual │ │ Data │ │ Query │ │ │
│ │ │ Cache │ │ Warehouse │ │ Sharing │ │ History │ │ │
│ │ │ │ │ Management│ │ │ │ │ │ │
│ │ └───────────┘ └───────────┘ └───────────┘ └───────────┘ │ │
│ └───┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ COMPUTE LAYER │ │
│ │ (Virtual Warehouses) │ │
│ │ │ │
│ │ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │ │
│ │ │ Warehouse A │ │ Warehouse B │ │ Warehouse C │ │ │
│ │ │ (Analytics) │ │ (ETL/ELT) │ │ (Data Science)│ │ │
│ │ │ │ │ │ │ │ │ │
│ │ │ ┌───┐ ┌───┐ │ │ ┌───┐ ┌───┐ │ │ ┌───┐ ┌───┐ │ │ │
│ │ │ │ N │ │ N │ │ │ │ N │ │ N │ │ │ │ N │ │ N │ │ │ │
│ │ │ └───┘ └───┘ │ │ └───┘ └───┘ │ │ └───┘ └───┘ │ │ │
│ │ │ ┌───┐ ┌───┐ │ │ ┌───┐ ┌───┐ │ │ ┌───┐ ┌───┐ │ │ │
│ │ │ │ N │ │ N │ │ │ │ N │ │ N │ │ │ │ N │ │ N │ │ │ │
│ │ │ └───┘ └───┘ │ │ └───┘ └───┘ │ │ └───┘ └───┘ │ │ │
│ │ │ Local SSD │ │ Local SSD │ │ Local SSD │ │ │
│ │ │ Cache │ │ Cache │ │ Cache │ │ │
│ │ └─────────────────┘ └─────────────────┘ └─────────────────┘ │ │
│ │ │ │
│ │ N = Compute Node Warehouses are independent & isolated │ │
│ └───┘ │
│ │ │
│ All warehouses access same data │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ STORAGE LAYER │ │
│ │ (Centralized, Shared Storage) │ │
│ │ │ │
│ │ ┌───┐ │ │
│ │ │ Cloud Object Storage (S3/Azure Blob/GCS) │ │ │
│ │ │ │ │ │
│ │ │ ┌──┐ │ │ │
│ │ │ │ Micro-Partitions (Columnar) │ │ │ │
│ │ │ │ │ │ │ │
│ │ │ │ ┌────┐ ┌────┐ ┌────┐ ┌────┐ ┌────┐ ┌────┐ ┌────┐ │ │ │ │
│ │ │ │ │ MP │ │ MP │ │ MP │ │ MP │ │ MP │ │ MP │ │ MP │ │ │ │ │
│ │ │ │ └────┘ └────┘ └────┘ └────┘ └────┘ └────┘ └────┘ │ │ │ │
│ │ │ │ │ │ │ │
│ │ │ │ • Compressed columnar format │ │ │ │
│ │ │ │ • 50-500 MB uncompressed per partition │ │ │ │
│ │ │ │ • Automatic clustering & pruning metadata │ │ │ │
│ │ │ └──┘ │ │ │
│ │ │ │ │ │
│ │ └───┘ │ │
│ └───┘ │
│ │
└───┘

2.2 Layer DescriptionsLayerFunctionKey CharacteristicsCloud ServicesBrain of the system - authentication, query optimization, metadata managementAlways running, shared across customers, charged only for heavy metadata operationsCompute (Virtual Warehouses)Query execution using MPP architectureOn-demand scaling, independent clusters, per-second billingStoragePersistent data storage in cloud object storageAutomatic compression, columnar format, separate from compute billing
3. Virtual Warehouses
3.1 Understanding Warehouse Sizes
Virtual warehouses are clusters of compute resources. Each size doubles the compute power (and cost) of the previous:SizeServersCredits/HourUse CaseX-Small11Development, light queriesSmall22Small teams, moderate workloadsMedium44Production analyticsLarge88Heavy analytics, medium ETLX-Large1616Large ETL, complex queries2X-Large3232Enterprise workloads3X-Large6464Massive data processing4X-Large128128Extreme workloads5X-Large256256Maximum performance6X-Large512512Largest available
3.2 Creating and Managing Warehouses
-- Create a warehouse for analytics workloads
CREATE WAREHOUSE analytics_wh
 WITH WAREHOUSE_SIZE = 'MEDIUM'
 AUTO_SUSPEND = 300 -- Suspend after 5 minutes idle
 AUTO_RESUME = TRUE -- Auto-start when query arrives
 MIN_CLUSTER_COUNT = 1 -- Minimum clusters (multi-cluster)
 MAX_CLUSTER_COUNT = 3 -- Maximum clusters for auto-scaling
 SCALING_POLICY = 'STANDARD' -- STANDARD or ECONOMY
 INITIALLY_SUSPENDED = TRUE -- Don't start immediately
 COMMENT = 'Warehouse for BI and analytics queries';

-- Create a warehouse for ETL workloads
CREATE WAREHOUSE etl_wh
 WITH WAREHOUSE_SIZE = 'LARGE'
 AUTO_SUSPEND = 60 -- Quick suspend for batch jobs
 AUTO_RESUME = TRUE
 WAREHOUSE_TYPE = 'STANDARD' -- or 'SNOWPARK-OPTIMIZED'
 COMMENT = 'Warehouse for ETL/ELT processing';

-- Create a Snowpark-optimized warehouse for ML workloads
CREATE WAREHOUSE ml_wh
 WITH WAREHOUSE_SIZE = 'MEDIUM'
 WAREHOUSE_TYPE = 'SNOWPARK-OPTIMIZED'
 AUTO_SUSPEND = 300
 COMMENT = 'Warehouse for Snowpark ML workloads';

-- Resize warehouse dynamically
ALTER WAREHOUSE analytics_wh SET WAREHOUSE_SIZE = 'LARGE';

-- Suspend/resume warehouse
ALTER WAREHOUSE analytics_wh SUSPEND;
ALTER WAREHOUSE analytics_wh RESUME;

3.3 Multi-Cluster Warehouses
Multi-cluster warehouses automatically scale out to handle concurrent query load:
-- Create multi-cluster warehouse for high concurrency
CREATE WAREHOUSE reporting_wh
 WITH WAREHOUSE_SIZE = 'SMALL'
 MIN_CLUSTER_COUNT = 1
 MAX_CLUSTER_COUNT = 10 -- Scale up to 10 clusters
 SCALING_POLICY = 'STANDARD' -- Add clusters when queued
 AUTO_SUSPEND = 300
 AUTO_RESUME = TRUE;

-- STANDARD vs ECONOMY scaling policies:
-- STANDARD: Adds clusters as soon as queries queue (better performance)
-- ECONOMY: Waits 6 minutes before adding clusters (lower cost)

4. Micro-Partitions and Data Storage
4.1 Understanding Micro-Partitions
Snowflake automatically organizes data into micro-partitions:
Size: 50-500 MB of uncompressed data per partition
Format: Compressed columnar storage
Immutable: Never modified, only created/deleted
Metadata: Rich metadata enables pruning (min/max values, distinct counts)
┌───┐
│ MICRO-PARTITION STRUCTURE │
├───┤
│ │
│ Table: SALES │
│ ┌──┐ │
│ │ │ │
│ │ Micro-Partition 1 Micro-Partition 2 Micro-Partition 3│ │
│ │ ┌──────────────────┐ ┌──────────────────┐ ┌──────────────────┐ │
│ │ │ Metadata: │ │ Metadata: │ │ Metadata: │ │
│ │ │ date: 2025-01-01 │ │ date: 2025-01-02 │ │ date: 2025-01-03 │ │
│ │ │ to 2025-01-01 │ │ to 2025-01-02 │ │ to 2025-01-03 │ │
│ │ │ amount: $10-$500 │ │ amount: $15-$800 │ │ amount: $5-$600 │ │
│ │ │ region: US, EU │ │ region: US, APAC │ │ region: EU, APAC │ │
│ │ ├──────────────────┤ ├──────────────────┤ ├──────────────────┤ │
│ │ │ Column: DATE │ │ Column: DATE │ │ Column: DATE │ │
│ │ │ ████████████ │ │ ████████████ │ │ ████████████ │ │
│ │ ├──────────────────┤ ├──────────────────┤ ├──────────────────┤ │
│ │ │ Column: AMOUNT │ │ Column: AMOUNT │ │ Column: AMOUNT │ │
│ │ │ ████████████ │ │ ████████████ │ │ ████████████ │ │
│ │ ├──────────────────┤ ├──────────────────┤ ├──────────────────┤ │
│ │ │ Column: REGION │ │ Column: REGION │ │ Column: REGION │ │
│ │ │ ████████████ │ │ ████████████ │ │ ████████████ │ │
│ │ └──────────────────┘ └──────────────────┘ └──────────────────┘ │
│ │ │ │
│ └──┘ │
│ │
│ Query: SELECT * FROM SALES WHERE date = '2025-01-02' │
│ Result: Only Micro-Partition 2 is scanned (partition pruning) │
│ │
└───┘

4.2 Clustering Keys
For large tables, clustering keys improve query performance by organizing data:
-- Check current clustering depth (lower is better)
SELECT SYSTEM$CLUSTERING_INFORMATION('sales', '(sale_date, region)');

-- Add clustering key to table
ALTER TABLE sales CLUSTER BY (sale_date, region);

-- Manually trigger reclustering (usually automatic)
ALTER TABLE sales RECLUSTER;

-- View clustering depth over time
SELECT * FROM TABLE(INFORMATION_SCHEMA.AUTOMATIC_CLUSTERING_HISTORY(
 DATE_RANGE_START => DATEADD('day', -7, CURRENT_DATE()),
 TABLE_NAME => 'sales'
));

-- Best practices for clustering keys:
-- 1. Use columns frequently in WHERE clauses
-- 2. Use columns in JOIN conditions
-- 3. Limit to 3-4 columns maximum
-- 4. Order by cardinality (low to high)

5. Time Travel and Data Protection
5.1 Time Travel
Snowflake automatically retains historical data for a configurable period:
-- Query data as it existed at a specific time
SELECT * FROM sales
AT(TIMESTAMP => '2025-01-28 10:00:00'::TIMESTAMP);

-- Query data as it existed before a specific statement
SELECT * FROM sales
BEFORE(STATEMENT => '01a2b3c4-5678-90ab-cdef-1234567890ab');

-- Query data from a specific offset
SELECT * FROM sales
AT(OFFSET => -60*60); -- 1 hour ago (seconds)

-- Restore a table to a previous state
CREATE TABLE sales_restored CLONE sales
AT(TIMESTAMP => '2025-01-28 10:00:00'::TIMESTAMP);

-- Undrop a dropped table
DROP TABLE sales;
UNDROP TABLE sales;

-- Set Time Travel retention (0-90 days, Enterprise Edition)
ALTER TABLE sales SET DATA_RETENTION_TIME_IN_DAYS = 30;

5.2 Fail-safe
After Time Travel expires, data enters Fail-safe for an additional 7 days (not user-accessible, Snowflake support only):
┌───┐
│ DATA RETENTION TIMELINE │
├───┤
│ │
│ Data Change ──▶ │
│ │ │
│ ▼ │
│ ┌────────────────────────────────┐ ┌────────────────────┐ ┌─────────────┐ │
│ │ TIME TRAVEL │ │ FAIL-SAFE │ │ PURGED │ │
│ │ │ │ │ │ │ │
│ │ • User-accessible │ │ • Not accessible │ │ • Gone │ │
│ │ • AT/BEFORE queries │ │ • Disaster recovery│ │ forever │ │
│ │ • CLONE, UNDROP │ │ • Contact support │ │ │ │
│ │ • 0-90 days (configurable) │ │ • 7 days fixed │ │ │ │
│ │ │ │ │ │ │ │
│ └────────────────────────────────┘ └────────────────────┘ └─────────────┘ │
│ │
│ Standard Edition: 1 day Time Travel + 7 days Fail-safe │
│ Enterprise Edition: 0-90 days Time Travel + 7 days Fail-safe │
│ │
└───┘

6. Caching Layers
6.1 Three Levels of Caching
Snowflake employs multiple caching layers to optimize performance:
-- 1. RESULT CACHE (Cloud Services Layer)
-- Returns cached results for identical queries
-- Free of charge, 24-hour retention
SELECT * FROM sales WHERE date = '2025-01-29'; -- First execution
SELECT * FROM sales WHERE date = '2025-01-29'; -- Cache hit!

-- Check if result came from cache
SELECT * FROM TABLE(INFORMATION_SCHEMA.QUERY_HISTORY_BY_SESSION())
WHERE QUERY_TEXT LIKE '%sales%'
ORDER BY START_TIME DESC LIMIT 5;
-- Look at BYTES_SCANNED (0 if from result cache)

-- 2. LOCAL DISK CACHE (Compute Layer)
-- Caches raw data on warehouse SSD
-- Persists until warehouse suspends
-- Improves repeat query performance

-- 3. REMOTE DISK CACHE (Storage Layer)
-- Caches frequently accessed micro-partitions
-- Shared across warehouses

-- Disable result cache for testing
ALTER SESSION SET USE_CACHED_RESULT = FALSE;

6.2 Cache Optimization Tips
-- Tips for maximizing cache effectiveness:

-- 1. Use consistent query patterns
-- Good: Same query structure
SELECT customer_id, SUM(amount) FROM sales GROUP BY customer_id;

-- 2. Avoid functions that change per execution
-- Bad: These bust the cache
SELECT * FROM sales WHERE date = CURRENT_DATE();
-- Better: Use explicit dates
SELECT * FROM sales WHERE date = '2025-01-29';

-- 3. Keep warehouses running for repeated workloads
-- Don't suspend between related queries

-- 4. Use the same warehouse for similar queries
-- Leverage local disk cache

7. Snowflake Editions
7.1 Edition ComparisonFeatureStandardEnterpriseBusiness CriticalVPSTime Travel1 day90 days90 days90 daysMulti-cluster Warehouses✓✓✓✓Materialized Views✗✓✓✓Search Optimization✗✓✓✓Column-level Security✗✓✓✓Row Access Policies✗✓✓✓Data Masking✗✓✓✓Private Connectivity✗✗✓✓HIPAA/PCI Compliance✗✗✓✓Tri-secret Encryption✗✗✓✓Dedicated Resources✗✗✗✓
8. Account and Object Hierarchy
8.1 Object Hierarchy
┌───┐
│ SNOWFLAKE OBJECT HIERARCHY │
├───┤
│ │
│ Organization (Optional - Multi-account management) │
│ └── Account │
│ ├── User │
│ ├── Role │
│ ├── Warehouse │
│ ├── Resource Monitor │
│ ├── Integration (Storage, API, Notification) │
│ │ │
│ └── Database │
│ └── Schema │
│ ├── Table (Permanent, Transient, Temporary) │
│ ├── View (Standard, Secure, Materialized) │
│ ├── Stage (Internal, External) │
│ ├── File Format │
│ ├── Sequence │
│ ├── Stored Procedure │
│ ├── User-Defined Function (UDF) │
│ ├── Stream │
│ ├── Task │
│ ├── Pipe │
│ └── Dynamic Table │
│ │
└───┘

8.2 Creating Database Objects
-- Create database
CREATE DATABASE analytics_db
 COMMENT = 'Production analytics database'
 DATA_RETENTION_TIME_IN_DAYS = 30;

-- Create schema with managed access
CREATE SCHEMA analytics_db.sales
 WITH MANAGED ACCESS
 COMMENT = 'Sales domain data';

-- With managed access, only schema owner can grant privileges
-- (centralized access control)

-- Create transient schema (no fail-safe, lower storage cost)
CREATE TRANSIENT SCHEMA analytics_db.staging
 COMMENT = 'Staging area for data loads';

-- Create permanent table
CREATE TABLE analytics_db.sales.transactions (
 transaction_id NUMBER AUTOINCREMENT PRIMARY KEY,
 customer_id VARCHAR(50) NOT NULL,
 product_id VARCHAR(50) NOT NULL,
 amount DECIMAL(18,2) NOT NULL,
 transaction_date DATE NOT NULL,
 region VARCHAR(20),
 created_at TIMESTAMP_NTZ DEFAULT CURRENT_TIMESTAMP()
)
CLUSTER BY (transaction_date, region)
COMMENT = 'Customer transactions fact table';

-- Create transient table (no fail-safe)
CREATE TRANSIENT TABLE analytics_db.staging.raw_transactions (
 data VARIANT,
 load_timestamp TIMESTAMP_NTZ DEFAULT CURRENT_TIMESTAMP()
);

-- Create temporary table (session-scoped, auto-dropped)
CREATE TEMPORARY TABLE temp_results AS
SELECT * FROM analytics_db.sales.transactions WHERE amount > 1000;

9. Best Practices
9.1 Architecture Best PracticesAreaBest PracticeRationaleWarehousesSeparate warehouses by workloadIsolate ETL from analyticsWarehousesEnable auto-suspend (60-300s)Reduce idle costsWarehousesUse multi-cluster for concurrencyScale out for usersStorageUse transient tables for stagingAvoid fail-safe costsStorageSet appropriate Time Travel retentionBalance cost vs. recovery needsClusteringAdd clustering keys for large tablesImprove query pruningCachingUse consistent query patternsMaximize result cache hits
9.2 Warehouse Sizing Guidelines
-- Start small and scale up as needed
-- Monitor with query history

SELECT
 WAREHOUSE_NAME,
 AVG(TOTAL_ELAPSED_TIME)/1000 as avg_seconds,
 AVG(BYTES_SCANNED)/1024/1024/1024 as avg_gb_scanned,
 COUNT(*) as query_count
FROM TABLE(INFORMATION_SCHEMA.QUERY_HISTORY(
 DATE_RANGE_START => DATEADD('day', -7, CURRENT_DATE())
))
WHERE WAREHOUSE_NAME IS NOT NULL
GROUP BY WAREHOUSE_NAME;

-- If avg query time > 30 seconds, consider larger warehouse
-- If queries queue frequently, consider multi-cluster

Document ControlVersionDateAuthorChanges1.02025-01-29Data Platform TeamInitial document
This document is maintained by the Data Platform Team. For questions or updates, contact the team via the #data-platform Slack channel.

