Snowflake Data Loading Guide
Document InformationFieldValueVersion1.0Last Updated2025-01-29ClassificationInternal UseOwnerData Engineering Team
1. Executive Summary
This guide provides comprehensive patterns for loading data into Snowflake, covering bulk loading with COPY INTO, continuous loading with Snowpipe, external tables, and data transformation during load. Understanding these patterns enables efficient data ingestion for both batch and real-time scenarios.
Data Loading OptionsMethodUse CaseLatencyCost ModelCOPY INTOBatch loading, large filesMinutesWarehouse creditsSnowpipeContinuous, event-drivenSeconds-minutesServerless creditsExternal TablesQuery without loadingReal-timeQuery-time creditsData SharingCross-account accessReal-timeConsumer credits
2. Data Loading Architecture
2.1 Loading Flow
┌───┐
│ SNOWFLAKE DATA LOADING ARCHITECTURE │
├───┤
│ │
│ DATA SOURCES │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ S3 │ │ Azure Blob │ │ GCS │ │ Local │ │
│ │ Bucket │ │ Storage │ │ Bucket │ │ Files │ │
│ └──────┬──────┘ └──────┬──────┘ └──────┬──────┘ └──────┬──────┘ │
│ │ │ │ │ │
│ └───────────────┴───────────────┴───────────────┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ STAGES │ │
│ │ │ │
│ │ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │ │
│ │ │ Internal Stage │ │ External Stage │ │ Table Stage │ │ │
│ │ │ │ │ │ │ │ │ │
│ │ │ @~ │ │ @my_s3_stage │ │ @%my_table │ │ │
│ │ │ @%table │ │ @my_azure_stage│ │ │ │ │
│ │ │ @my_stage │ │ @my_gcs_stage │ │ │ │ │
│ │ └─────────────────┘ └─────────────────┘ └─────────────────┘ │ │
│ └───┘ │
│ │ │
│ ┌──────────────┼──────────────┐ │
│ │ │ │ │
│ ▼ ▼ ▼ │
│ ┌──────────────────┐ ┌──────────────────┐ ┌──────────────────┐ │
│ │ COPY INTO │ │ SNOWPIPE │ │ EXTERNAL TABLE │ │
│ │ │ │ │ │ │ │
│ │ • Batch load │ │ • Continuous │ │ • Query in place│ │
│ │ • Warehouse │ │ • Serverless │ │ • No loading │ │
│ │ • Full control │ │ • Auto-ingest │ │ • Partition-aware│ │
│ └────────┬─────────┘ └────────┬─────────┘ └────────┬─────────┘ │
│ │ │ │ │
│ └────────────────────┴────────────────────┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ SNOWFLAKE TABLES │ │
│ │ │ │
│ │ ┌──┐ │ │
│ │ │ • Compressed columnar storage (micro-partitions) │ │ │
│ │ │ • Automatic metadata for pruning │ │ │
│ │ │ • Time Travel enabled │ │ │
│ │ └──┘ │ │
│ └───┘ │
│ │
└───┘

3. Stages Configuration
3.1 Internal Stages
Internal stages store files within Snowflake's managed storage:
-- User stage (personal, automatic)
-- Files stored at @~
PUT file://local/path/data.csv @~;
LIST @~;

-- Table stage (per-table, automatic)
-- Files stored at @%table_name
PUT file://local/path/data.csv @%my_table;
LIST @%my_table;

-- Named internal stage (shared, configurable)
CREATE STAGE my_internal_stage
 FILE_FORMAT = (TYPE = 'CSV' FIELD_DELIMITER = ',' SKIP_HEADER = 1)
 COPY_OPTIONS = (ON_ERROR = 'CONTINUE')
 COMMENT = 'Internal stage for CSV data loads';

-- Upload files to internal stage
PUT file://local/data/*.csv @my_internal_stage/daily/
 AUTO_COMPRESS = TRUE
 PARALLEL = 4;

-- List files in stage
LIST @my_internal_stage/daily/;

3.2 External Stages (Cloud Storage)
-- Create storage integration for AWS S3
CREATE STORAGE INTEGRATION s3_integration
 TYPE = EXTERNAL_STAGE
 STORAGE_PROVIDER = 'S3'
 ENABLED = TRUE
 STORAGE_AWS_ROLE_ARN = 'arn:aws:iam::123456789:role/snowflake-access'
 STORAGE_ALLOWED_LOCATIONS = ('s3://my-bucket/data/', 's3://my-bucket/archive/');

-- Describe integration to get AWS IAM user ARN for trust policy
DESC INTEGRATION s3_integration;

-- Create external stage for S3
CREATE STAGE s3_data_stage
 STORAGE_INTEGRATION = s3_integration
 URL = 's3://my-bucket/data/'
 FILE_FORMAT = (TYPE = 'PARQUET')
 COMMENT = 'S3 stage for Parquet data files';

-- Create storage integration for Azure Blob
CREATE STORAGE INTEGRATION azure_integration
 TYPE = EXTERNAL_STAGE
 STORAGE_PROVIDER = 'AZURE'
 ENABLED = TRUE
 AZURE_TENANT_ID = 'your-tenant-id'
 STORAGE_ALLOWED_LOCATIONS = ('azure://account.blob.core.windows.net/container/');

-- Create external stage for Azure
CREATE STAGE azure_data_stage
 STORAGE_INTEGRATION = azure_integration
 URL = 'azure://account.blob.core.windows.net/container/data/'
 FILE_FORMAT = (TYPE = 'JSON');

-- Create storage integration for GCS
CREATE STORAGE INTEGRATION gcs_integration
 TYPE = EXTERNAL_STAGE
 STORAGE_PROVIDER = 'GCS'
 ENABLED = TRUE
 STORAGE_ALLOWED_LOCATIONS = ('gcs://my-bucket/');

-- List files in external stage
LIST @s3_data_stage/2025/01/;

4. File Formats
4.1 Creating File Formats
-- CSV file format with common options
CREATE FILE FORMAT csv_format
 TYPE = 'CSV'
 FIELD_DELIMITER = ','
 RECORD_DELIMITER = '\n'
 SKIP_HEADER = 1
 FIELD_OPTIONALLY_ENCLOSED_BY = '"'
 NULL_IF = ('NULL', 'null', '')
 EMPTY_FIELD_AS_NULL = TRUE
 TRIM_SPACE = TRUE
 ERROR_ON_COLUMN_COUNT_MISMATCH = FALSE
 ESCAPE = 'NONE'
 ESCAPE_UNENCLOSED_FIELD = '\\'
 DATE_FORMAT = 'AUTO'
 TIMESTAMP_FORMAT = 'AUTO'
 ENCODING = 'UTF8'
 COMMENT = 'Standard CSV format';

-- JSON file format
CREATE FILE FORMAT json_format
 TYPE = 'JSON'
 COMPRESSION = 'AUTO'
 DATE_FORMAT = 'AUTO'
 TIMESTAMP_FORMAT = 'AUTO'
 STRIP_OUTER_ARRAY = TRUE
 STRIP_NULL_VALUES = FALSE
 IGNORE_UTF8_ERRORS = FALSE
 COMMENT = 'JSON format with outer array stripped';

-- Parquet file format (recommended for analytics)
CREATE FILE FORMAT parquet_format
 TYPE = 'PARQUET'
 COMPRESSION = 'SNAPPY'
 BINARY_AS_TEXT = FALSE
 COMMENT = 'Parquet format for columnar data';

-- Avro file format
CREATE FILE FORMAT avro_format
 TYPE = 'AVRO'
 COMPRESSION = 'AUTO'
 COMMENT = 'Avro format for schema evolution';

-- ORC file format
CREATE FILE FORMAT orc_format
 TYPE = 'ORC'
 TRIM_SPACE = FALSE
 COMMENT = 'ORC format';

5. COPY INTO Command
5.1 Basic COPY INTO
-- Simple COPY INTO from stage
COPY INTO raw_db.public.customers
FROM @s3_data_stage/customers/
FILE_FORMAT = (FORMAT_NAME = 'csv_format')
ON_ERROR = 'CONTINUE'
PURGE = FALSE;

-- COPY INTO with pattern matching
COPY INTO raw_db.public.transactions
FROM @s3_data_stage/transactions/
PATTERN = '.*2025-01.*\.parquet'
FILE_FORMAT = (FORMAT_NAME = 'parquet_format');

-- COPY INTO with explicit column mapping
COPY INTO raw_db.public.orders (
 order_id,
 customer_id,
 order_date,
 total_amount,
 load_timestamp
)
FROM (
 SELECT
 $1::INTEGER,
 $2::VARCHAR,
 $3::DATE,
 $4::DECIMAL(18,2),
 CURRENT_TIMESTAMP()
 FROM @s3_data_stage/orders/
)
FILE_FORMAT = (TYPE = 'CSV' SKIP_HEADER = 1);

5.2 COPY INTO with Transformations
-- Transform during load (flatten JSON)
COPY INTO raw_db.public.events
FROM (
 SELECT
 $1:event_id::VARCHAR AS event_id,
 $1:event_type::VARCHAR AS event_type,
 $1:user_id::VARCHAR AS user_id,
 $1:properties::VARIANT AS properties,
 TO_TIMESTAMP_NTZ($1:timestamp::VARCHAR) AS event_timestamp,
 $1:metadata.source::VARCHAR AS source,
 METADATA$FILENAME AS source_file,
 METADATA$FILE_ROW_NUMBER AS file_row_num,
 CURRENT_TIMESTAMP() AS loaded_at
 FROM @s3_data_stage/events/
)
FILE_FORMAT = (TYPE = 'JSON')
ON_ERROR = 'CONTINUE';

-- Load Parquet with schema inference
COPY INTO raw_db.public.sales
FROM @s3_data_stage/sales/
FILE_FORMAT = (TYPE = 'PARQUET')
MATCH_BY_COLUMN_NAME = CASE_INSENSITIVE
ON_ERROR = 'SKIP_FILE';

5.3 Error Handling
-- Copy with validation mode (dry run)
COPY INTO raw_db.public.customers
FROM @s3_data_stage/customers/
VALIDATION_MODE = 'RETURN_ERRORS';

-- View copy history and errors
SELECT *
FROM TABLE(INFORMATION_SCHEMA.COPY_HISTORY(
 TABLE_NAME => 'CUSTOMERS',
 START_TIME => DATEADD('hour', -24, CURRENT_TIMESTAMP())
))
ORDER BY LAST_LOAD_TIME DESC;

-- Check for rejected records
SELECT *
FROM TABLE(VALIDATE(raw_db.public.customers,
 JOB_ID => '_last'));

-- Error handling options
COPY INTO raw_db.public.data
FROM @stage
ON_ERROR = 'CONTINUE' -- Skip bad rows, continue loading
-- ON_ERROR = 'SKIP_FILE' -- Skip entire file on error
-- ON_ERROR = 'SKIP_FILE_10%' -- Skip file if >10% errors
-- ON_ERROR = 'ABORT_STATEMENT' -- Stop on first error
SIZE_LIMIT = 10000000000 -- 10GB max per COPY
PURGE = TRUE; -- Delete files after successful load

6. Snowpipe (Continuous Loading)
6.1 Snowpipe Architecture
┌───┐
│ SNOWPIPE CONTINUOUS LOADING │
├───┤
│ │
│ ┌──┐ │
│ │ EVENT NOTIFICATIONS │ │
│ │ │ │
│ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │ │
│ │ │ S3 Event │ │ Azure Event │ │ GCS Pub/ │ │ │
│ │ │ Notification│ │ Grid │ │ Sub │ │ │
│ │ └──────┬──────┘ └──────┬──────┘ └──────┬──────┘ │ │
│ │ │ │ │ │ │
│ │ └────────────────────┴────────────────────┘ │ │
│ │ │ │ │
│ │ ▼ │ │
│ │ ┌─────────────────┐ │ │
│ │ │ Snowflake SQS │ │ │
│ │ │ Queue │ │ │
│ │ └────────┬────────┘ │ │
│ └─────────────────────────────┼──────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ SNOWPIPE │ │
│ │ │ │
│ │ ┌──┐ │ │
│ │ │ • Serverless compute (no warehouse needed) │ │ │
│ │ │ • Auto-scales based on file volume │ │ │
│ │ │ • Near real-time loading (sub-minute latency) │ │ │
│ │ │ • Billed per file/data loaded │ │ │
│ │ └──┘ │ │
│ │ │ │ │
│ │ ▼ │ │
│ │ ┌──┐ │ │
│ │ │ TARGET TABLE │ │ │
│ │ │ (Continuous data landing) │ │ │
│ │ └──┘ │ │
│ └───┘ │
│ │
└───┘

6.2 Creating Snowpipes
-- Create notification integration for S3
CREATE NOTIFICATION INTEGRATION s3_notification_int
 ENABLED = TRUE
 TYPE = QUEUE
 NOTIFICATION_PROVIDER = AWS_SQS
 DIRECTION = INBOUND
 AWS_SQS_ARN = 'arn:aws:sqs:us-east-1:123456789:snowflake-notifications'
 AWS_SQS_ROLE_ARN = 'arn:aws:iam::123456789:role/snowflake-sqs-role';

-- Create Snowpipe with auto-ingest
CREATE PIPE raw_db.public.events_pipe
 AUTO_INGEST = TRUE
 AWS_SNS_TOPIC = 'arn:aws:sns:us-east-1:123456789:new-events'
 COMMENT = 'Auto-ingest pipe for event data'
AS
COPY INTO raw_db.public.events
FROM (
 SELECT
 $1:event_id::VARCHAR,
 $1:event_type::VARCHAR,
 $1:user_id::VARCHAR,
 $1:timestamp::TIMESTAMP_NTZ,
 $1:properties::VARIANT,
 METADATA$FILENAME,
 CURRENT_TIMESTAMP()
 FROM @s3_data_stage/events/
)
FILE_FORMAT = (TYPE = 'JSON');

-- Get SQS queue ARN for S3 event configuration
SHOW PIPES LIKE 'events_pipe';
-- Use the notificationChannelName in S3 bucket event configuration

-- Create Snowpipe for Azure
CREATE PIPE azure_events_pipe
 AUTO_INGEST = TRUE
 INTEGRATION = 'azure_notification_int'
AS
COPY INTO raw_db.public.events
FROM @azure_data_stage/events/
FILE_FORMAT = (TYPE = 'JSON');

6.3 Managing Snowpipes
-- Check pipe status
SELECT SYSTEM$PIPE_STATUS('raw_db.public.events_pipe');

-- View pipe load history
SELECT *
FROM TABLE(INFORMATION_SCHEMA.COPY_HISTORY(
 TABLE_NAME => 'EVENTS',
 START_TIME => DATEADD('hour', -24, CURRENT_TIMESTAMP())
))
WHERE PIPE_NAME = 'EVENTS_PIPE'
ORDER BY LAST_LOAD_TIME DESC;

-- Manually trigger pipe for specific files
ALTER PIPE events_pipe REFRESH
 PREFIX = 'events/2025/01/29/';

-- Pause/resume pipe
ALTER PIPE events_pipe SET PIPE_EXECUTION_PAUSED = TRUE;
ALTER PIPE events_pipe SET PIPE_EXECUTION_PAUSED = FALSE;

-- View Snowpipe usage and costs
SELECT *
FROM SNOWFLAKE.ACCOUNT_USAGE.PIPE_USAGE_HISTORY
WHERE PIPE_NAME = 'EVENTS_PIPE'
AND START_TIME >= DATEADD('day', -30, CURRENT_DATE())
ORDER BY START_TIME DESC;

7. External Tables
7.1 Creating External Tables
External tables allow querying data without loading it:
-- Create external table on Parquet files
CREATE EXTERNAL TABLE analytics_db.public.external_sales (
 sale_date DATE AS (VALUE:sale_date::DATE),
 product_id VARCHAR AS (VALUE:product_id::VARCHAR),
 quantity INTEGER AS (VALUE:quantity::INTEGER),
 amount DECIMAL(18,2) AS (VALUE:amount::DECIMAL(18,2)),
 region VARCHAR AS (VALUE:region::VARCHAR)
)
WITH LOCATION = @s3_data_stage/sales/
FILE_FORMAT = (TYPE = 'PARQUET')
AUTO_REFRESH = TRUE
PATTERN = '.*\.parquet';

-- Create partitioned external table
CREATE EXTERNAL TABLE analytics_db.public.partitioned_events (
 event_id VARCHAR AS (VALUE:event_id::VARCHAR),
 event_type VARCHAR AS (VALUE:event_type::VARCHAR),
 user_id VARCHAR AS (VALUE:user_id::VARCHAR),
 event_timestamp TIMESTAMP AS (VALUE:timestamp::TIMESTAMP)
)
PARTITION BY (event_date DATE)
WITH LOCATION = @s3_data_stage/events/
PARTITION_TYPE = USER_SPECIFIED
FILE_FORMAT = (TYPE = 'JSON');

-- Add partitions
ALTER EXTERNAL TABLE partitioned_events ADD PARTITION(event_date='2025-01-29')
 LOCATION 'events/2025/01/29/';

-- Refresh metadata
ALTER EXTERNAL TABLE external_sales REFRESH;

-- Query external table (same as regular table)
SELECT region, SUM(amount)
FROM analytics_db.public.external_sales
WHERE sale_date >= '2025-01-01'
GROUP BY region;

7.2 Iceberg Tables
-- Create Iceberg table (external catalog)
CREATE ICEBERG TABLE analytics_db.public.iceberg_sales (
 sale_id INTEGER,
 customer_id VARCHAR,
 amount DECIMAL(18,2),
 sale_date DATE
)
CATALOG = 'SNOWFLAKE'
EXTERNAL_VOLUME = 'my_external_volume'
BASE_LOCATION = 'iceberg_sales/';

-- Insert data into Iceberg table
INSERT INTO analytics_db.public.iceberg_sales
SELECT * FROM staging_db.sales.transformed_sales;

-- Query Iceberg table
SELECT * FROM analytics_db.public.iceberg_sales
WHERE sale_date = '2025-01-29';

8. Best Practices
8.1 Loading Best PracticesPracticeRecommendationFile Size100-250 MB compressed for optimal parallelismFile FormatUse Parquet/ORC for analytics, JSON for semi-structuredCompressionGZIP for CSV, Snappy for ParquetPartitioningOrganize files by date/partition key in storageError HandlingUse ON_ERROR='CONTINUE' with validationSchedulingBatch files into windows for COPY INTOSnowpipeUse for real-time needs, file-at-a-time
8.2 Performance Tips
-- 1. Use appropriately sized warehouse for COPY INTO
ALTER WAREHOUSE loading_wh SET WAREHOUSE_SIZE = 'LARGE';

-- 2. Load multiple files in parallel (up to file_parallelism)
COPY INTO my_table
FROM @stage
FILE_FORMAT = (TYPE = 'PARQUET')
FORCE = FALSE; -- Skip already-loaded files

-- 3. Use MATCH_BY_COLUMN_NAME for Parquet
COPY INTO my_table
FROM @stage
FILE_FORMAT = (TYPE = 'PARQUET')
MATCH_BY_COLUMN_NAME = CASE_INSENSITIVE;

-- 4. Monitor load performance
SELECT *
FROM TABLE(INFORMATION_SCHEMA.COPY_HISTORY(
 TABLE_NAME => 'MY_TABLE',
 START_TIME => DATEADD('hour', -1, CURRENT_TIMESTAMP())
));

Document ControlVersionDateAuthorChanges1.02025-01-29Data Engineering TeamInitial document
This document is maintained by the Data Engineering Team. For questions or updates, contact the team via the #data-engineering Slack channel.

