Snowflake Data Transformation Guide
Document InformationFieldValueVersion1.0Last Updated2025-01-29ClassificationInternal UseOwnerData Engineering Team
1. Executive Summary
This guide provides comprehensive patterns for transforming data in Snowflake, covering SQL-based transformations, ELT patterns, stored procedures, and Snowpark for advanced transformations. Understanding these patterns enables building efficient, maintainable data pipelines.
Transformation ApproachesApproachUse CaseLanguageBest ForSQL ViewsSimple transformationsSQLReal-time queriesCTAS/INSERTBatch transformationsSQLScheduled loadsStored ProceduresComplex logicSQL/JavaScriptMulti-step processesSnowparkML/Advanced analyticsPython/Java/ScalaData scienceDynamic TablesDeclarative pipelinesSQLAutomated refresh
2. SQL-Based Transformations
2.1 Views for Real-Time Transformations
-- Standard view (computed at query time)
CREATE OR REPLACE VIEW analytics_db.reports.customer_summary_v AS
SELECT
 c.customer_id,
 c.customer_name,
 c.region,
 COUNT(DISTINCT o.order_id) AS total_orders,
 SUM(o.amount) AS total_spend,
 AVG(o.amount) AS avg_order_value,
 MIN(o.order_date) AS first_order_date,
 MAX(o.order_date) AS last_order_date,
 DATEDIFF('day', MAX(o.order_date), CURRENT_DATE()) AS days_since_last_order
FROM analytics_db.dimensions.customers c
LEFT JOIN analytics_db.facts.orders o ON c.customer_id = o.customer_id
GROUP BY c.customer_id, c.customer_name, c.region;

-- Secure view (hides underlying query from users)
CREATE OR REPLACE SECURE VIEW analytics_db.reports.sensitive_customer_v AS
SELECT
 customer_id,
 CASE
 WHEN CURRENT_ROLE() IN ('ADMIN_ROLE', 'COMPLIANCE_ROLE')
 THEN customer_name
 ELSE '***REDACTED***'
 END AS customer_name,
 region,
 total_spend
FROM analytics_db.reports.customer_summary_v
WHERE region = CASE
 WHEN CURRENT_ROLE() = 'NA_ANALYST' THEN 'North America'
 WHEN CURRENT_ROLE() = 'EU_ANALYST' THEN 'Europe'
 ELSE region
END;

2.2 Materialized Views
-- Materialized view (pre-computed, auto-refreshed)
-- Requires Enterprise Edition
CREATE OR REPLACE MATERIALIZED VIEW analytics_db.reports.daily_sales_mv
AS
SELECT
 DATE_TRUNC('day', order_date) AS sale_date,
 region,
 product_category,
 COUNT(*) AS order_count,
 SUM(amount) AS total_sales,
 AVG(amount) AS avg_sale
FROM analytics_db.facts.orders
GROUP BY 1, 2, 3;

-- Materialized views are automatically maintained
-- Check refresh status
SHOW MATERIALIZED VIEWS IN SCHEMA analytics_db.reports;

-- View maintenance history
SELECT *
FROM TABLE(INFORMATION_SCHEMA.MATERIALIZED_VIEW_REFRESH_HISTORY(
 DATE_RANGE_START => DATEADD('day', -7, CURRENT_DATE())
));

-- Suspend/resume auto-refresh
ALTER MATERIALIZED VIEW daily_sales_mv SUSPEND;
ALTER MATERIALIZED VIEW daily_sales_mv RESUME;

2.3 CREATE TABLE AS SELECT (CTAS)
-- Create table from transformation
CREATE OR REPLACE TABLE analytics_db.facts.order_summary AS
SELECT
 customer_id,
 DATE_TRUNC('month', order_date) AS order_month,
 COUNT(*) AS order_count,
 SUM(amount) AS total_amount,
 SUM(quantity) AS total_items,
 COUNT(DISTINCT product_id) AS unique_products
FROM staging_db.cleaned.orders
WHERE order_date >= '2024-01-01'
GROUP BY 1, 2;

-- Create transient table for staging
CREATE OR REPLACE TRANSIENT TABLE staging_db.temp.daily_transform AS
SELECT
 *,
 CURRENT_TIMESTAMP() AS transformed_at
FROM raw_db.public.source_data
WHERE load_date = CURRENT_DATE();

-- Create table with clustering for large datasets
CREATE OR REPLACE TABLE analytics_db.facts.large_transactions
CLUSTER BY (transaction_date, region)
AS
SELECT * FROM staging_db.cleaned.transactions;

3. Incremental Processing
3.1 MERGE for Upserts
-- MERGE for upsert operations (SCD Type 1)
MERGE INTO analytics_db.dimensions.customers AS target
USING staging_db.cleaned.customers_update AS source
ON target.customer_id = source.customer_id
WHEN MATCHED THEN UPDATE SET
 customer_name = source.customer_name,
 email = source.email,
 phone = source.phone,
 address = source.address,
 updated_at = CURRENT_TIMESTAMP()
WHEN NOT MATCHED THEN INSERT (
 customer_id, customer_name, email, phone, address, created_at, updated_at
) VALUES (
 source.customer_id, source.customer_name, source.email, source.phone,
 source.address, CURRENT_TIMESTAMP(), CURRENT_TIMESTAMP()
);

-- MERGE with DELETE
MERGE INTO analytics_db.facts.inventory AS target
USING staging_db.cleaned.inventory_changes AS source
ON target.product_id = source.product_id
 AND target.warehouse_id = source.warehouse_id
WHEN MATCHED AND source.quantity = 0 THEN DELETE
WHEN MATCHED THEN UPDATE SET
 quantity = source.quantity,
 last_updated = source.event_time
WHEN NOT MATCHED AND source.quantity > 0 THEN INSERT (
 product_id, warehouse_id, quantity, last_updated
) VALUES (
 source.product_id, source.warehouse_id, source.quantity, source.event_time
);

3.2 Incremental Load Patterns
-- High watermark pattern for incremental loads
-- Step 1: Get last processed timestamp
SET last_processed = (
 SELECT COALESCE(MAX(processed_timestamp), '1900-01-01')
 FROM analytics_db.metadata.load_tracking
 WHERE table_name = 'orders'
);

-- Step 2: Process new/updated records
INSERT INTO analytics_db.facts.orders
SELECT
 order_id,
 customer_id,
 product_id,
 quantity,
 amount,
 order_date,
 CURRENT_TIMESTAMP() AS processed_timestamp
FROM staging_db.cleaned.orders
WHERE updated_at > $last_processed;

-- Step 3: Update tracking table
INSERT INTO analytics_db.metadata.load_tracking (table_name, processed_timestamp, row_count)
SELECT
 'orders',
 CURRENT_TIMESTAMP(),
 COUNT(*)
FROM staging_db.cleaned.orders
WHERE updated_at > $last_processed;

4. Stored Procedures
4.1 SQL Stored Procedures
-- Basic stored procedure
CREATE OR REPLACE PROCEDURE analytics_db.procedures.refresh_daily_summary()
RETURNS VARCHAR
LANGUAGE SQL
EXECUTE AS CALLER
AS
$$
BEGIN
 -- Truncate and reload summary table
 TRUNCATE TABLE analytics_db.reports.daily_summary;

 INSERT INTO analytics_db.reports.daily_summary
 SELECT
 CURRENT_DATE() - 1 AS report_date,
 region,
 COUNT(*) AS order_count,
 SUM(amount) AS total_sales
 FROM analytics_db.facts.orders
 WHERE order_date = CURRENT_DATE() - 1
 GROUP BY region;

 RETURN 'Daily summary refreshed successfully';
END;
$$;

-- Call procedure
CALL analytics_db.procedures.refresh_daily_summary();

-- Procedure with parameters and error handling
CREATE OR REPLACE PROCEDURE analytics_db.procedures.load_partition(
 partition_date DATE,
 source_schema VARCHAR
)
RETURNS VARCHAR
LANGUAGE SQL
EXECUTE AS OWNER
AS
$$
DECLARE
 row_count INTEGER;
 error_msg VARCHAR;
BEGIN
 -- Start transaction
 BEGIN TRANSACTION;

 -- Delete existing partition data
 DELETE FROM analytics_db.facts.transactions
 WHERE transaction_date = :partition_date;

 -- Insert new data
 INSERT INTO analytics_db.facts.transactions
 SELECT *
 FROM IDENTIFIER(:source_schema || '.transactions')
 WHERE transaction_date = :partition_date;

 -- Get row count
 row_count := SQLROWCOUNT;

 -- Log the load
 INSERT INTO analytics_db.metadata.load_log (table_name, partition_date, row_count, load_time)
 VALUES ('transactions', :partition_date, :row_count, CURRENT_TIMESTAMP());

 COMMIT;

 RETURN 'Loaded ' || :row_count || ' rows for ' || :partition_date;

EXCEPTION
 WHEN OTHER THEN
 ROLLBACK;
 error_msg := SQLERRM;
 INSERT INTO analytics_db.metadata.error_log (procedure_name, error_message, error_time)
 VALUES ('load_partition', :error_msg, CURRENT_TIMESTAMP());
 RETURN 'ERROR: ' || :error_msg;
END;
$$;

-- Call with parameters
CALL analytics_db.procedures.load_partition('2025-01-29', 'staging_db.cleaned');

4.2 JavaScript Stored Procedures
-- JavaScript procedure for complex logic
CREATE OR REPLACE PROCEDURE analytics_db.procedures.process_json_data(
 source_table VARCHAR,
 target_table VARCHAR
)
RETURNS VARIANT
LANGUAGE JAVASCRIPT
EXECUTE AS CALLER
AS
$$
 var result = {
 status: 'success',
 rows_processed: 0,
 errors: []
 };

 try {
 // Get source data
 var sql_cmd = `SELECT * FROM IDENTIFIER('${SOURCE_TABLE}')`;
 var stmt = snowflake.createStatement({sqlText: sql_cmd});
 var rs = stmt.execute();

 var processed = 0;
 while (rs.next()) {
 var json_data = rs.getColumnValue(1);

 // Validate JSON structure
 if (!json_data.id || !json_data.timestamp) {
 result.errors.push('Missing required fields in row ' + processed);
 continue;
 }

 // Insert transformed data
 var insert_sql = `
 INSERT INTO IDENTIFIER('${TARGET_TABLE}')
 (id, event_time, data)
 VALUES (?, ?, ?)
 `;
 var insert_stmt = snowflake.createStatement({
 sqlText: insert_sql,
 binds: [json_data.id, json_data.timestamp, json_data]
 });
 insert_stmt.execute();
 processed++;
 }

 result.rows_processed = processed;

 } catch (err) {
 result.status = 'error';
 result.errors.push(err.message);
 }

 return result;
$$;

5. Snowpark Transformations
5.1 Snowpark Python Basics
Snowpark session setup
from snowflake.snowpark import Session
from snowflake.snowpark.functions import col, sum, avg, count, when, lit
from snowflake.snowpark.types import StructType, StructField, StringType, DecimalType

Create session
connection_params = {
 "account": "myaccount",
 "user": "myuser",
 "password": "mypassword",
 "role": "TRANSFORMER",
 "warehouse": "ETL_WH",
 "database": "ANALYTICS_DB",
 "schema": "TRANSFORMS"
}
session = Session.builder.configs(connection_params).create()

Read data
orders_df = session.table("STAGING_DB.CLEANED.ORDERS")
customers_df = session.table("ANALYTICS_DB.DIMENSIONS.CUSTOMERS")

Transform with DataFrame API
customer_summary = (
 orders_df
 .join(customers_df, orders_df["customer_id"] == customers_df["customer_id"])
 .group_by(customers_df["customer_id"], customers_df["region"])
 .agg(
 count("*").alias("order_count"),
 sum("amount").alias("total_spend"),
 avg("amount").alias("avg_order_value")
)
 .filter(col("order_count") > 5)
 .sort(col("total_spend").desc())
)

Write results
customer_summary.write.mode("overwrite").save_as_table("ANALYTICS_DB.REPORTS.CUSTOMER_SUMMARY")

Close session
session.close()

5.2 Snowpark Stored Procedure
Register as stored procedure
from snowflake.snowpark import Session
from snowflake.snowpark.functions import col, when, lit

def transform_orders(session: Session, source_table: str, target_table: str) -> str:
 """Transform orders with business logic."""

 # Read source
 df = session.table(source_table)

 # Apply transformations
 transformed = (
 df
 .with_column("order_category",
 when(col("amount") >= 1000, lit("high_value"))
 .when(col("amount") >= 100, lit("medium_value"))
 .otherwise(lit("low_value"))
)
 .with_column("is_weekend",
 when(col("order_date").dayofweek().isin([1, 7]), lit(True))
 .otherwise(lit(False))
)
 .with_column("processed_at", lit(session.sql("SELECT CURRENT_TIMESTAMP()").collect()[0][0]))
)

 # Write to target
 transformed.write.mode("overwrite").save_as_table(target_table)

 return f"Processed {transformed.count()} rows"

Register procedure in Snowflake
session.sproc.register(
 func=transform_orders,
 name="TRANSFORM_ORDERS",
 packages=["snowflake-snowpark-python"],
 is_permanent=True,
 stage_location="@MY_STAGE",
 replace=True
)

6. Data Quality Transformations
6.1 Data Cleansing Patterns
-- Standardize and cleanse data
CREATE OR REPLACE TABLE staging_db.cleaned.customers AS
SELECT
 customer_id,
 -- Standardize name
 INITCAP(TRIM(customer_name)) AS customer_name,
 -- Validate and clean email
 CASE
 WHEN REGEXP_LIKE(LOWER(TRIM(email)), '^[a-z0-9._%+-]+@[a-z0-9.-]+\.[a-z]{2,}$')
 THEN LOWER(TRIM(email))
 ELSE NULL
 END AS email,
 -- Standardize phone
 REGEXP_REPLACE(phone, '[^0-9]', '') AS phone_cleaned,
 -- Parse address
 TRIM(SPLIT_PART(address, ',', 1)) AS street,
 TRIM(SPLIT_PART(address, ',', 2)) AS city,
 UPPER(TRIM(SPLIT_PART(address, ',', 3))) AS state,
 REGEXP_SUBSTR(address, '[0-9]{5}(-[0-9]{4})?') AS zip_code,
 -- Handle nulls
 COALESCE(region, 'Unknown') AS region,
 -- Add metadata
 CURRENT_TIMESTAMP() AS cleaned_at,
 MD5(customer_id || email || phone) AS record_hash
FROM raw_db.public.customers;

-- Deduplicate records
CREATE OR REPLACE TABLE staging_db.cleaned.customers_deduped AS
SELECT *
FROM (
 SELECT
 *,
 ROW_NUMBER() OVER (
 PARTITION BY customer_id
 ORDER BY updated_at DESC, created_at DESC
) AS rn
 FROM staging_db.cleaned.customers
)
WHERE rn = 1;

6.2 Data Validation
-- Create validation results table
CREATE OR REPLACE TABLE analytics_db.quality.validation_results (
 validation_id VARCHAR DEFAULT UUID_STRING(),
 table_name VARCHAR,
 validation_rule VARCHAR,
 validation_result VARCHAR,
 failed_records INTEGER,
 total_records INTEGER,
 validation_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP()
);

-- Validation procedure
CREATE OR REPLACE PROCEDURE analytics_db.procedures.validate_customers()
RETURNS TABLE (rule VARCHAR, status VARCHAR, failed_count INTEGER)
LANGUAGE SQL
AS
$$
DECLARE
 results RESULTSET;
BEGIN
 -- Rule 1: No null customer_id
 INSERT INTO analytics_db.quality.validation_results (table_name, validation_rule, validation_result, failed_records, total_records)
 SELECT
 'customers',
 'customer_id_not_null',
 IFF(COUNT_IF(customer_id IS NULL) = 0, 'PASSED', 'FAILED'),
 COUNT_IF(customer_id IS NULL),
 COUNT(*)
 FROM analytics_db.dimensions.customers;

 -- Rule 2: Valid email format
 INSERT INTO analytics_db.quality.validation_results (table_name, validation_rule, validation_result, failed_records, total_records)
 SELECT
 'customers',
 'valid_email_format',
 IFF(COUNT_IF(email IS NOT NULL AND NOT REGEXP_LIKE(email, '^[^@]+@[^@]+\\.[^@]+$')) = 0, 'PASSED', 'FAILED'),
 COUNT_IF(email IS NOT NULL AND NOT REGEXP_LIKE(email, '^[^@]+@[^@]+\\.[^@]+$')),
 COUNT(*)
 FROM analytics_db.dimensions.customers;

 -- Return results
 results := (
 SELECT validation_rule AS rule, validation_result AS status, failed_records AS failed_count
 FROM analytics_db.quality.validation_results
 WHERE validation_time >= DATEADD('minute', -5, CURRENT_TIMESTAMP())
);

 RETURN TABLE(results);
END;
$$;

7. Best Practices
7.1 Transformation Best PracticesPracticeDescriptionIdempotent OperationsUse MERGE or DELETE+INSERT for rerunnable transformationsIncremental ProcessingProcess only new/changed data when possibleClusteringAdd clustering keys to large transformed tablesMaterialized ViewsUse for frequently accessed aggregationsError HandlingLog errors and implement retry logicMetadata TrackingTrack load times, row counts, and data lineage
Document ControlVersionDateAuthorChanges1.02025-01-29Data Engineering TeamInitial document
This document is maintained by the Data Engineering Team.

