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1. Executive Summary
This guide provides comprehensive patterns for transforming data in Snowflake, covering SQL-based transformations, ELT patterns, stored procedures, and Snowpark for advanced transformations. Understanding these patterns enables building efficient, maintainable data pipelines.
Transformation ApproachesApproachUse CaseLanguageBest ForSQL ViewsSimple transformationsSQLReal-time queriesCTAS/INSERTBatch transformationsSQLScheduled loadsStored ProceduresComplex logicSQL/JavaScriptMulti-step processesSnowparkML/Advanced analyticsPython/Java/ScalaData scienceDynamic TablesDeclarative pipelinesSQLAutomated refresh
2. SQL-Based Transformations
2.1 Views for Real-Time Transformations
-- Standard view (computed at query time)
CREATE OR REPLACE VIEW analytics_db.reports.customer_summary_v AS
SELECT
    c.customer_id,
    c.customer_name,
    c.region,
    COUNT(DISTINCT o.order_id) AS total_orders,
    SUM(o.amount) AS total_spend,
    AVG(o.amount) AS avg_order_value,
    MIN(o.order_date) AS first_order_date,
    MAX(o.order_date) AS last_order_date,
    DATEDIFF('day', MAX(o.order_date), CURRENT_DATE()) AS days_since_last_order
FROM analytics_db.dimensions.customers c
LEFT JOIN analytics_db.facts.orders o ON c.customer_id = o.customer_id
GROUP BY c.customer_id, c.customer_name, c.region;

-- Secure view (hides underlying query from users)
CREATE OR REPLACE SECURE VIEW analytics_db.reports.sensitive_customer_v AS
SELECT
    customer_id,
    CASE
        WHEN CURRENT_ROLE() IN ('ADMIN_ROLE', 'COMPLIANCE_ROLE')
        THEN customer_name
        ELSE '***REDACTED***'
    END AS customer_name,
    region,
    total_spend
FROM analytics_db.reports.customer_summary_v
WHERE region = CASE
    WHEN CURRENT_ROLE() = 'NA_ANALYST' THEN 'North America'
    WHEN CURRENT_ROLE() = 'EU_ANALYST' THEN 'Europe'
    ELSE region
END;

2.2 Materialized Views
-- Materialized view (pre-computed, auto-refreshed)
-- Requires Enterprise Edition
CREATE OR REPLACE MATERIALIZED VIEW analytics_db.reports.daily_sales_mv
AS
SELECT
    DATE_TRUNC('day', order_date) AS sale_date,
    region,
    product_category,
    COUNT(*) AS order_count,
    SUM(amount) AS total_sales,
    AVG(amount) AS avg_sale
FROM analytics_db.facts.orders
GROUP BY 1, 2, 3;

-- Materialized views are automatically maintained
-- Check refresh status
SHOW MATERIALIZED VIEWS IN SCHEMA analytics_db.reports;

-- View maintenance history
SELECT *
FROM TABLE(INFORMATION_SCHEMA.MATERIALIZED_VIEW_REFRESH_HISTORY(
    DATE_RANGE_START => DATEADD('day', -7, CURRENT_DATE())
));

-- Suspend/resume auto-refresh
ALTER MATERIALIZED VIEW daily_sales_mv SUSPEND;
ALTER MATERIALIZED VIEW daily_sales_mv RESUME;

2.3 CREATE TABLE AS SELECT (CTAS)
-- Create table from transformation
CREATE OR REPLACE TABLE analytics_db.facts.order_summary AS
SELECT
    customer_id,
    DATE_TRUNC('month', order_date) AS order_month,
    COUNT(*) AS order_count,
    SUM(amount) AS total_amount,
    SUM(quantity) AS total_items,
    COUNT(DISTINCT product_id) AS unique_products
FROM staging_db.cleaned.orders
WHERE order_date >= '2024-01-01'
GROUP BY 1, 2;

-- Create transient table for staging
CREATE OR REPLACE TRANSIENT TABLE staging_db.temp.daily_transform AS
SELECT
    *,
    CURRENT_TIMESTAMP() AS transformed_at
FROM raw_db.public.source_data
WHERE load_date = CURRENT_DATE();

-- Create table with clustering for large datasets
CREATE OR REPLACE TABLE analytics_db.facts.large_transactions
CLUSTER BY (transaction_date, region)
AS
SELECT * FROM staging_db.cleaned.transactions;

3. Incremental Processing
3.1 MERGE for Upserts
-- MERGE for upsert operations (SCD Type 1)
MERGE INTO analytics_db.dimensions.customers AS target
USING staging_db.cleaned.customers_update AS source
ON target.customer_id = source.customer_id
WHEN MATCHED THEN UPDATE SET
    customer_name = source.customer_name,
    email = source.email,
    phone = source.phone,
    address = source.address,
    updated_at = CURRENT_TIMESTAMP()
WHEN NOT MATCHED THEN INSERT (
    customer_id, customer_name, email, phone, address, created_at, updated_at
) VALUES (
    source.customer_id, source.customer_name, source.email, source.phone,
    source.address, CURRENT_TIMESTAMP(), CURRENT_TIMESTAMP()
);

-- MERGE with DELETE
MERGE INTO analytics_db.facts.inventory AS target
USING staging_db.cleaned.inventory_changes AS source
ON target.product_id = source.product_id
    AND target.warehouse_id = source.warehouse_id
WHEN MATCHED AND source.quantity = 0 THEN DELETE
WHEN MATCHED THEN UPDATE SET
    quantity = source.quantity,
    last_updated = source.event_time
WHEN NOT MATCHED AND source.quantity > 0 THEN INSERT (
    product_id, warehouse_id, quantity, last_updated
) VALUES (
    source.product_id, source.warehouse_id, source.quantity, source.event_time
);

3.2 Incremental Load Patterns
-- High watermark pattern for incremental loads
-- Step 1: Get last processed timestamp
SET last_processed = (
    SELECT COALESCE(MAX(processed_timestamp), '1900-01-01')
    FROM analytics_db.metadata.load_tracking
    WHERE table_name = 'orders'
);

-- Step 2: Process new/updated records
INSERT INTO analytics_db.facts.orders
SELECT
    order_id,
    customer_id,
    product_id,
    quantity,
    amount,
    order_date,
    CURRENT_TIMESTAMP() AS processed_timestamp
FROM staging_db.cleaned.orders
WHERE updated_at > $last_processed;

-- Step 3: Update tracking table
INSERT INTO analytics_db.metadata.load_tracking (table_name, processed_timestamp, row_count)
SELECT
    'orders',
    CURRENT_TIMESTAMP(),
    COUNT(*)
FROM staging_db.cleaned.orders
WHERE updated_at > $last_processed;

4. Stored Procedures
4.1 SQL Stored Procedures
-- Basic stored procedure
CREATE OR REPLACE PROCEDURE analytics_db.procedures.refresh_daily_summary()
RETURNS VARCHAR
LANGUAGE SQL
EXECUTE AS CALLER
AS
$$
BEGIN
    -- Truncate and reload summary table
    TRUNCATE TABLE analytics_db.reports.daily_summary;

    INSERT INTO analytics_db.reports.daily_summary
    SELECT
        CURRENT_DATE() - 1 AS report_date,
        region,
        COUNT(*) AS order_count,
        SUM(amount) AS total_sales
    FROM analytics_db.facts.orders
    WHERE order_date = CURRENT_DATE() - 1
    GROUP BY region;

    RETURN 'Daily summary refreshed successfully';
END;
$$;

-- Call procedure
CALL analytics_db.procedures.refresh_daily_summary();

-- Procedure with parameters and error handling
CREATE OR REPLACE PROCEDURE analytics_db.procedures.load_partition(
    partition_date DATE,
    source_schema VARCHAR
)
RETURNS VARCHAR
LANGUAGE SQL
EXECUTE AS OWNER
AS
$$
DECLARE
    row_count INTEGER;
    error_msg VARCHAR;
BEGIN
    -- Start transaction
    BEGIN TRANSACTION;

    -- Delete existing partition data
    DELETE FROM analytics_db.facts.transactions
    WHERE transaction_date = :partition_date;

    -- Insert new data
    INSERT INTO analytics_db.facts.transactions
    SELECT *
    FROM IDENTIFIER(:source_schema || '.transactions')
    WHERE transaction_date = :partition_date;

    -- Get row count
    row_count := SQLROWCOUNT;

    -- Log the load
    INSERT INTO analytics_db.metadata.load_log (table_name, partition_date, row_count, load_time)
    VALUES ('transactions', :partition_date, :row_count, CURRENT_TIMESTAMP());

    COMMIT;

    RETURN 'Loaded ' || :row_count || ' rows for ' || :partition_date;

EXCEPTION
    WHEN OTHER THEN
        ROLLBACK;
        error_msg := SQLERRM;
        INSERT INTO analytics_db.metadata.error_log (procedure_name, error_message, error_time)
        VALUES ('load_partition', :error_msg, CURRENT_TIMESTAMP());
        RETURN 'ERROR: ' || :error_msg;
END;
$$;

-- Call with parameters
CALL analytics_db.procedures.load_partition('2025-01-29', 'staging_db.cleaned');

4.2 JavaScript Stored Procedures
-- JavaScript procedure for complex logic
CREATE OR REPLACE PROCEDURE analytics_db.procedures.process_json_data(
    source_table VARCHAR,
    target_table VARCHAR
)
RETURNS VARIANT
LANGUAGE JAVASCRIPT
EXECUTE AS CALLER
AS
$$
    var result = {
        status: 'success',
        rows_processed: 0,
        errors: []
    };

    try {
        // Get source data
        var sql_cmd = `SELECT * FROM IDENTIFIER('${SOURCE_TABLE}')`;
        var stmt = snowflake.createStatement({sqlText: sql_cmd});
        var rs = stmt.execute();

        var processed = 0;
        while (rs.next()) {
            var json_data = rs.getColumnValue(1);

            // Validate JSON structure
            if (!json_data.id || !json_data.timestamp) {
                result.errors.push('Missing required fields in row ' + processed);
                continue;
            }

            // Insert transformed data
            var insert_sql = `
                INSERT INTO IDENTIFIER('${TARGET_TABLE}')
                (id, event_time, data)
                VALUES (?, ?, ?)
            `;
            var insert_stmt = snowflake.createStatement({
                sqlText: insert_sql,
                binds: [json_data.id, json_data.timestamp, json_data]
            });
            insert_stmt.execute();
            processed++;
        }

        result.rows_processed = processed;

    } catch (err) {
        result.status = 'error';
        result.errors.push(err.message);
    }

    return result;
$$;

5. Snowpark Transformations
5.1 Snowpark Python Basics
# Snowpark session setup
from snowflake.snowpark import Session
from snowflake.snowpark.functions import col, sum, avg, count, when, lit
from snowflake.snowpark.types import StructType, StructField, StringType, DecimalType

# Create session
connection_params = {
    "account": "myaccount",
    "user": "myuser",
    "password": "mypassword",
    "role": "TRANSFORMER",
    "warehouse": "ETL_WH",
    "database": "ANALYTICS_DB",
    "schema": "TRANSFORMS"
}
session = Session.builder.configs(connection_params).create()

# Read data
orders_df = session.table("STAGING_DB.CLEANED.ORDERS")
customers_df = session.table("ANALYTICS_DB.DIMENSIONS.CUSTOMERS")

# Transform with DataFrame API
customer_summary = (
    orders_df
    .join(customers_df, orders_df["customer_id"] == customers_df["customer_id"])
    .group_by(customers_df["customer_id"], customers_df["region"])
    .agg(
        count("*").alias("order_count"),
        sum("amount").alias("total_spend"),
        avg("amount").alias("avg_order_value")
    )
    .filter(col("order_count") > 5)
    .sort(col("total_spend").desc())
)

# Write results
customer_summary.write.mode("overwrite").save_as_table("ANALYTICS_DB.REPORTS.CUSTOMER_SUMMARY")

# Close session
session.close()

5.2 Snowpark Stored Procedure
# Register as stored procedure
from snowflake.snowpark import Session
from snowflake.snowpark.functions import col, when, lit

def transform_orders(session: Session, source_table: str, target_table: str) -> str:
    """Transform orders with business logic."""

    # Read source
    df = session.table(source_table)

    # Apply transformations
    transformed = (
        df
        .with_column("order_category",
            when(col("amount") >= 1000, lit("high_value"))
            .when(col("amount") >= 100, lit("medium_value"))
            .otherwise(lit("low_value"))
        )
        .with_column("is_weekend",
            when(col("order_date").dayofweek().isin([1, 7]), lit(True))
            .otherwise(lit(False))
        )
        .with_column("processed_at", lit(session.sql("SELECT CURRENT_TIMESTAMP()").collect()[0][0]))
    )

    # Write to target
    transformed.write.mode("overwrite").save_as_table(target_table)

    return f"Processed {transformed.count()} rows"

# Register procedure in Snowflake
session.sproc.register(
    func=transform_orders,
    name="TRANSFORM_ORDERS",
    packages=["snowflake-snowpark-python"],
    is_permanent=True,
    stage_location="@MY_STAGE",
    replace=True
)

6. Data Quality Transformations
6.1 Data Cleansing Patterns
-- Standardize and cleanse data
CREATE OR REPLACE TABLE staging_db.cleaned.customers AS
SELECT
    customer_id,
    -- Standardize name
    INITCAP(TRIM(customer_name)) AS customer_name,
    -- Validate and clean email
    CASE
        WHEN REGEXP_LIKE(LOWER(TRIM(email)), '^[a-z0-9._%+-]+@[a-z0-9.-]+\.[a-z]{2,}$')
        THEN LOWER(TRIM(email))
        ELSE NULL
    END AS email,
    -- Standardize phone
    REGEXP_REPLACE(phone, '[^0-9]', '') AS phone_cleaned,
    -- Parse address
    TRIM(SPLIT_PART(address, ',', 1)) AS street,
    TRIM(SPLIT_PART(address, ',', 2)) AS city,
    UPPER(TRIM(SPLIT_PART(address, ',', 3))) AS state,
    REGEXP_SUBSTR(address, '[0-9]{5}(-[0-9]{4})?') AS zip_code,
    -- Handle nulls
    COALESCE(region, 'Unknown') AS region,
    -- Add metadata
    CURRENT_TIMESTAMP() AS cleaned_at,
    MD5(customer_id || email || phone) AS record_hash
FROM raw_db.public.customers;

-- Deduplicate records
CREATE OR REPLACE TABLE staging_db.cleaned.customers_deduped AS
SELECT *
FROM (
    SELECT
        *,
        ROW_NUMBER() OVER (
            PARTITION BY customer_id
            ORDER BY updated_at DESC, created_at DESC
        ) AS rn
    FROM staging_db.cleaned.customers
)
WHERE rn = 1;

6.2 Data Validation
-- Create validation results table
CREATE OR REPLACE TABLE analytics_db.quality.validation_results (
    validation_id VARCHAR DEFAULT UUID_STRING(),
    table_name VARCHAR,
    validation_rule VARCHAR,
    validation_result VARCHAR,
    failed_records INTEGER,
    total_records INTEGER,
    validation_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP()
);

-- Validation procedure
CREATE OR REPLACE PROCEDURE analytics_db.procedures.validate_customers()
RETURNS TABLE (rule VARCHAR, status VARCHAR, failed_count INTEGER)
LANGUAGE SQL
AS
$$
DECLARE
    results RESULTSET;
BEGIN
    -- Rule 1: No null customer_id
    INSERT INTO analytics_db.quality.validation_results (table_name, validation_rule, validation_result, failed_records, total_records)
    SELECT
        'customers',
        'customer_id_not_null',
        IFF(COUNT_IF(customer_id IS NULL) = 0, 'PASSED', 'FAILED'),
        COUNT_IF(customer_id IS NULL),
        COUNT(*)
    FROM analytics_db.dimensions.customers;

    -- Rule 2: Valid email format
    INSERT INTO analytics_db.quality.validation_results (table_name, validation_rule, validation_result, failed_records, total_records)
    SELECT
        'customers',
        'valid_email_format',
        IFF(COUNT_IF(email IS NOT NULL AND NOT REGEXP_LIKE(email, '^[^@]+@[^@]+\\.[^@]+$')) = 0, 'PASSED', 'FAILED'),
        COUNT_IF(email IS NOT NULL AND NOT REGEXP_LIKE(email, '^[^@]+@[^@]+\\.[^@]+$')),
        COUNT(*)
    FROM analytics_db.dimensions.customers;

    -- Return results
    results := (
        SELECT validation_rule AS rule, validation_result AS status, failed_records AS failed_count
        FROM analytics_db.quality.validation_results
        WHERE validation_time >= DATEADD('minute', -5, CURRENT_TIMESTAMP())
    );

    RETURN TABLE(results);
END;
$$;

7. Best Practices
7.1 Transformation Best PracticesPracticeDescriptionIdempotent OperationsUse MERGE or DELETE+INSERT for rerunnable transformationsIncremental ProcessingProcess only new/changed data when possibleClusteringAdd clustering keys to large transformed tablesMaterialized ViewsUse for frequently accessed aggregationsError HandlingLog errors and implement retry logicMetadata TrackingTrack load times, row counts, and data lineage
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