Snowflake External Tables & Data Lake Integration Guide
Document InformationFieldValueVersion1.0Last Updated2025-01-29ClassificationInternal UseOwnerData Engineering Team
1. Executive Summary
External tables allow Snowflake to query data stored in external cloud storage (S3, Azure Blob, GCS) without loading it into Snowflake. This guide covers creating external tables, managing metadata refresh, and implementing data lake architectures with Snowflake.
2. External Tables Architecture
┌───┐
│ EXTERNAL TABLES ARCHITECTURE │
├───┤
│ │
│ CLOUD STORAGE (Data Lake) SNOWFLAKE │
│ ┌─────────────────────────────┐ ┌─────────────────────────────┐ │
│ │ │ │ │ │
│ │ ┌───────────────────────┐ │ │ ┌───────────────────────┐ │ │
│ │ │ S3 / Azure Blob │ │ │ │ External Table │ │ │
│ │ │ / GCS Bucket │ │ │ │ (Metadata Only) │ │ │
│ │ │ │ │ │ │ │ │ │
│ │ │ ┌─────┐ ┌─────┐ │ │ Metadata │ │ • Column definitions │ │ │
│ │ │ │Parq.│ │JSON │ │ │◄──────────┤ │ • Partition info │ │ │
│ │ │ │files│ │files│ │ │ │ │ • File locations │ │ │
│ │ │ └─────┘ └─────┘ │ │ │ └───────────┬───────────┘ │ │
│ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │
│ │ │ │CSV │ │ORC │ │ │ │ ▼ │ │
│ │ │ │files│ │files│ │ │ │ ┌───────────────────────┐ │ │
│ │ │ └─────┘ └─────┘ │ │ Query │ │ Virtual Warehouse │ │ │
│ │ └───────────────────────┘ │◄──────────┤ │ │ │ │
│ │ ▲ │ Execution │ │ Reads files on │ │ │
│ │ │ │ │ │ demand during query │ │ │
│ │ External Stage │ │ └───────────────────────┘ │ │
│ │ (Points to bucket) │ │ │ │
│ │ │ │ │ │
│ └─────────────────────────────┘ └─────────────────────────────┘ │
│ │
│ KEY BENEFITS: │
│ • Query data without loading into Snowflake │
│ • No storage costs in Snowflake for raw data │
│ • Support for multiple file formats (Parquet, JSON, CSV, ORC, Avro) │
│ • Automatic partition pruning │
│ • Integrates with Delta Lake and Apache Iceberg │
│ │
└───┘

3. Creating External Tables
3.1 Setting Up External Stages
-- Create storage integration (one-time admin setup)
CREATE OR REPLACE STORAGE INTEGRATION s3_data_lake_int
 TYPE = EXTERNAL_STAGE
 STORAGE_PROVIDER = 'S3'
 ENABLED = TRUE
 STORAGE_AWS_ROLE_ARN = 'arn:aws:iam::123456789012:role/snowflake-access-role'
 STORAGE_ALLOWED_LOCATIONS = ('s3://my-data-lake-bucket/');

-- Azure example
CREATE OR REPLACE STORAGE INTEGRATION azure_data_lake_int
 TYPE = EXTERNAL_STAGE
 STORAGE_PROVIDER = 'AZURE'
 ENABLED = TRUE
 AZURE_TENANT_ID = 'your-tenant-id'
 STORAGE_ALLOWED_LOCATIONS = ('azure://myaccount.blob.core.windows.net/container/');

-- Create external stage
CREATE OR REPLACE STAGE raw_data_stage
 URL = 's3://my-data-lake-bucket/raw/'
 STORAGE_INTEGRATION = s3_data_lake_int
 FILE_FORMAT = (TYPE = PARQUET);

-- List files in stage
LIST @raw_data_stage;
LIST @raw_data_stage/orders/;

3.2 Basic External Table
-- Create external table on Parquet files
CREATE OR REPLACE EXTERNAL TABLE ext_orders (
 order_id NUMBER AS (value:order_id::NUMBER),
 customer_id VARCHAR AS (value:customer_id::VARCHAR),
 order_date DATE AS (value:order_date::DATE),
 amount NUMBER(18,2) AS (value:amount::NUMBER(18,2)),
 product_id VARCHAR AS (value:product_id::VARCHAR),
 quantity NUMBER AS (value:quantity::NUMBER)
)
WITH LOCATION = @raw_data_stage/orders/
FILE_FORMAT = (TYPE = PARQUET)
AUTO_REFRESH = TRUE;

-- Create external table on JSON files
CREATE OR REPLACE EXTERNAL TABLE ext_events (
 event_id VARCHAR AS (value:event_id::VARCHAR),
 event_type VARCHAR AS (value:event_type::VARCHAR),
 user_id VARCHAR AS (value:user_id::VARCHAR),
 event_timestamp TIMESTAMP_NTZ AS (value:timestamp::TIMESTAMP_NTZ),
 properties VARIANT AS (value:properties::VARIANT)
)
WITH LOCATION = @raw_data_stage/events/
FILE_FORMAT = (TYPE = JSON)
AUTO_REFRESH = TRUE;

-- Create external table on CSV files
CREATE OR REPLACE EXTERNAL TABLE ext_products (
 product_id VARCHAR AS (METADATA$FILENAME || '-' || METADATA$FILE_ROW_NUMBER),
 product_name VARCHAR AS (GET($1, 'c1')::VARCHAR),
 category VARCHAR AS (GET($1, 'c2')::VARCHAR),
 price NUMBER(10,2) AS (GET($1, 'c3')::NUMBER(10,2)),
 -- Metadata columns
 file_name VARCHAR AS METADATA$FILENAME,
 file_row_number NUMBER AS METADATA$FILE_ROW_NUMBER
)
WITH LOCATION = @raw_data_stage/products/
FILE_FORMAT = (TYPE = CSV SKIP_HEADER = 1);

3.3 Partitioned External Tables
-- External table with partitions from path
CREATE OR REPLACE EXTERNAL TABLE ext_sales_partitioned (
 sale_id NUMBER AS (value:sale_id::NUMBER),
 customer_id VARCHAR AS (value:customer_id::VARCHAR),
 amount NUMBER(18,2) AS (value:amount::NUMBER(18,2)),
 -- Partition columns derived from path
 sale_year VARCHAR AS SPLIT_PART(METADATA$FILENAME, '/', 2),
 sale_month VARCHAR AS SPLIT_PART(METADATA$FILENAME, '/', 3),
 sale_day VARCHAR AS SPLIT_PART(METADATA$FILENAME, '/', 4)
)
PARTITION BY (sale_year, sale_month, sale_day)
WITH LOCATION = @raw_data_stage/sales/
-- Path pattern: sales/year=2025/month=01/day=29/file.parquet
PATTERN = '.*year=.*/month=.*/day=.*/.*[.]parquet'
FILE_FORMAT = (TYPE = PARQUET)
AUTO_REFRESH = TRUE;

-- Query with partition pruning
SELECT customer_id, SUM(amount) AS total
FROM ext_sales_partitioned
WHERE sale_year = '2025'
 AND sale_month = '01'
GROUP BY customer_id;

4. Managing External Tables
4.1 Metadata Refresh
-- Manual refresh
ALTER EXTERNAL TABLE ext_orders REFRESH;

-- Refresh specific path
ALTER EXTERNAL TABLE ext_orders REFRESH 'orders/2025/01/';

-- Check refresh status
SELECT *
FROM TABLE(INFORMATION_SCHEMA.EXTERNAL_TABLE_FILE_REGISTRATION_HISTORY(
 TABLE_NAME => 'ext_orders',
 START_TIME => DATEADD('hour', -24, CURRENT_TIMESTAMP())
))
ORDER BY LAST_LOAD_TIME DESC;

-- View external table metadata
SHOW EXTERNAL TABLES;
DESCRIBE EXTERNAL TABLE ext_orders;

-- Check files registered
SELECT METADATA$FILENAME, COUNT(*)
FROM ext_orders
GROUP BY METADATA$FILENAME;

4.2 Auto-Refresh with Event Notifications
-- AWS SQS notification (configured in storage integration)
CREATE OR REPLACE EXTERNAL TABLE ext_orders_auto
WITH LOCATION = @raw_data_stage/orders/
FILE_FORMAT = (TYPE = PARQUET)
AUTO_REFRESH = TRUE
AWS_SNS_TOPIC = 'arn:aws:sns:us-east-1:123456789012:s3-notifications';

-- Azure Event Grid
CREATE OR REPLACE EXTERNAL TABLE ext_orders_auto
WITH LOCATION = @azure_stage/orders/
FILE_FORMAT = (TYPE = PARQUET)
AUTO_REFRESH = TRUE
INTEGRATION = azure_event_integration;

-- Monitor auto-refresh
SELECT *
FROM TABLE(INFORMATION_SCHEMA.EXTERNAL_TABLE_FILES(
 TABLE_NAME => 'ext_orders_auto'
))
LIMIT 100;

5. Delta Lake Integration
5.1 Reading Delta Lake Tables
-- Create external table for Delta Lake
CREATE OR REPLACE EXTERNAL TABLE ext_delta_orders
WITH LOCATION = @raw_data_stage/delta_orders/
FILE_FORMAT = (TYPE = PARQUET)
TABLE_FORMAT = DELTA;

-- Query Delta table
SELECT * FROM ext_delta_orders
WHERE order_date >= '2025-01-01';

-- Refresh Delta metadata
ALTER EXTERNAL TABLE ext_delta_orders REFRESH;

-- Check Delta table version
SELECT METADATA$EXTERNAL_TABLE_PARTITION
FROM ext_delta_orders
LIMIT 1;

5.2 Delta Lake Best Practices
-- Create materialized view on Delta table for performance
CREATE MATERIALIZED VIEW mv_delta_summary AS
SELECT
 DATE_TRUNC('day', order_date) AS order_day,
 COUNT(*) AS order_count,
 SUM(amount) AS total_amount
FROM ext_delta_orders
GROUP BY 1;

-- Use Dynamic Tables for Delta transformations
CREATE DYNAMIC TABLE dt_delta_enriched
 TARGET_LAG = '1 hour'
 WAREHOUSE = etl_wh
AS
SELECT
 d.*,
 c.customer_name,
 c.region
FROM ext_delta_orders d
LEFT JOIN customers c ON d.customer_id = c.customer_id;

6. Apache Iceberg Integration
6.1 Creating Iceberg Tables
-- Create Iceberg table (Snowflake-managed)
CREATE OR REPLACE ICEBERG TABLE iceberg_orders (
 order_id NUMBER,
 customer_id VARCHAR,
 order_date DATE,
 amount NUMBER(18,2)
)
CATALOG = 'SNOWFLAKE'
EXTERNAL_VOLUME = 'my_external_volume'
BASE_LOCATION = 'orders/'
AS SELECT * FROM raw_orders;

-- Create external Iceberg table (externally managed)
CREATE OR REPLACE ICEBERG TABLE ext_iceberg_orders
 CATALOG = 'SNOWFLAKE'
 EXTERNAL_VOLUME = 'my_external_volume'
 BASE_LOCATION = 'external_orders/'
 CATALOG_TABLE_NAME = 'orders';

-- Query Iceberg table
SELECT * FROM iceberg_orders
WHERE order_date >= '2025-01-01';

6.2 Iceberg Table Operations
-- Insert into Iceberg table
INSERT INTO iceberg_orders
SELECT order_id, customer_id, order_date, amount
FROM staging_orders;

-- Update Iceberg table
UPDATE iceberg_orders
SET amount = amount * 1.1
WHERE order_date = '2025-01-29';

-- Delete from Iceberg table
DELETE FROM iceberg_orders
WHERE order_date < '2024-01-01';

-- Compact Iceberg table
ALTER ICEBERG TABLE iceberg_orders COMPACT;

-- Time travel with Iceberg
SELECT * FROM iceberg_orders
AT (TIMESTAMP => '2025-01-28 12:00:00'::TIMESTAMP);

-- View Iceberg table snapshots
SHOW SNAPSHOTS IN ICEBERG TABLE iceberg_orders;

7. Performance Optimization
7.1 Query Optimization for External Tables
-- 1. Use partition pruning
-- GOOD: Filters on partition columns
SELECT * FROM ext_sales_partitioned
WHERE sale_year = '2025' AND sale_month = '01';

-- BAD: Full scan without partition filter
SELECT * FROM ext_sales_partitioned
WHERE amount > 1000;

-- 2. Select only needed columns
-- GOOD: Specific columns
SELECT order_id, amount FROM ext_orders
WHERE order_date = '2025-01-29';

-- BAD: Select all columns
SELECT * FROM ext_orders
WHERE order_date = '2025-01-29';

-- 3. Use materialized views for frequent queries
CREATE MATERIALIZED VIEW mv_ext_orders_summary AS
SELECT
 DATE_TRUNC('day', order_date) AS order_day,
 COUNT(*) AS order_count,
 SUM(amount) AS total_amount
FROM ext_orders
GROUP BY 1;

7.2 File Format Optimization
-- Optimal Parquet settings
CREATE FILE FORMAT parquet_optimized
 TYPE = PARQUET
 COMPRESSION = SNAPPY;

-- Optimal CSV settings
CREATE FILE FORMAT csv_optimized
 TYPE = CSV
 FIELD_OPTIONALLY_ENCLOSED_BY = '"'
 SKIP_HEADER = 1
 COMPRESSION = GZIP
 TRIM_SPACE = TRUE
 NULL_IF = ('', 'NULL', 'null');

-- Optimal JSON settings
CREATE FILE FORMAT json_optimized
 TYPE = JSON
 STRIP_OUTER_ARRAY = TRUE
 COMPRESSION = GZIP;

7.3 Monitoring External Table Performance
-- Check query performance on external tables
SELECT
 query_id,
 query_text,
 total_elapsed_time / 1000 AS elapsed_seconds,
 bytes_scanned / 1024 / 1024 / 1024 AS gb_scanned,
 files_scanned,
 partitions_scanned,
 partitions_total
FROM TABLE(INFORMATION_SCHEMA.QUERY_HISTORY())
WHERE query_text ILIKE '%ext_orders%'
 AND start_time >= DATEADD('day', -1, CURRENT_TIMESTAMP())
ORDER BY total_elapsed_time DESC
LIMIT 20;

-- Monitor external table file counts
SELECT
 table_name,
 COUNT(*) AS file_count,
 SUM(file_size) / 1024 / 1024 AS total_size_mb
FROM TABLE(INFORMATION_SCHEMA.EXTERNAL_TABLE_FILES(
 TABLE_NAME => 'ext_orders'
))
GROUP BY table_name;

8. Data Lake Architecture Patterns
8.1 Lakehouse Pattern
-- Bronze Layer: External tables on raw data
CREATE EXTERNAL TABLE bronze.ext_raw_orders
WITH LOCATION = @data_lake_stage/bronze/orders/
FILE_FORMAT = (TYPE = PARQUET)
AUTO_REFRESH = TRUE;

-- Silver Layer: Dynamic table for cleansed data
CREATE DYNAMIC TABLE silver.orders_cleansed
 TARGET_LAG = '15 minutes'
 WAREHOUSE = etl_wh
AS
SELECT
 order_id,
 customer_id,
 TRY_TO_DATE(order_date) AS order_date,
 TRY_TO_NUMBER(amount, 18, 2) AS amount,
 CURRENT_TIMESTAMP() AS processed_at
FROM bronze.ext_raw_orders
WHERE order_id IS NOT NULL;

-- Gold Layer: Aggregated data in native table
CREATE DYNAMIC TABLE gold.daily_sales
 TARGET_LAG = '1 hour'
 WAREHOUSE = etl_wh
AS
SELECT
 order_date,
 COUNT(*) AS order_count,
 SUM(amount) AS total_revenue
FROM silver.orders_cleansed
GROUP BY order_date;

8.2 Hybrid Storage Pattern
-- Hot data: Native Snowflake tables (recent data)
CREATE TABLE hot_data.orders AS
SELECT * FROM ext_orders
WHERE order_date >= DATEADD('month', -3, CURRENT_DATE());

-- Cold data: External tables (historical data)
CREATE EXTERNAL TABLE cold_data.ext_orders_historical
WITH LOCATION = @archive_stage/orders/
FILE_FORMAT = (TYPE = PARQUET);

-- Unified view combining hot and cold
CREATE SECURE VIEW unified.all_orders AS
SELECT * FROM hot_data.orders
UNION ALL
SELECT * FROM cold_data.ext_orders_historical
WHERE order_date < DATEADD('month', -3, CURRENT_DATE());

9. Best Practices
9.1 External Tables ChecklistPracticeDescriptionUse Parquet formatBest performance for analytical queriesPartition dataEnable partition pruning for large datasetsEnable auto-refreshKeep metadata synchronizedMonitor file sizesOptimal: 100MB-1GB per fileUse storage integrationSecure credential managementCreate materialized viewsCache frequently queried aggregations
9.2 Anti-Patterns to Avoid
-- AVOID: Too many small files
-- Instead, consolidate files to 100MB-1GB

-- AVOID: Querying without partition filters
-- BAD
SELECT * FROM ext_sales_partitioned WHERE amount > 1000;
-- GOOD
SELECT * FROM ext_sales_partitioned WHERE sale_year = '2025' AND amount > 1000;

-- AVOID: Complex transformations on external tables
-- Instead, materialize with Dynamic Tables
-- BAD: Complex join on external tables
SELECT e.*, c.* FROM ext_orders e JOIN ext_customers c ON e.customer_id = c.customer_id;
-- GOOD: Use Dynamic Table
CREATE DYNAMIC TABLE dt_enriched_orders AS
SELECT e.*, c.customer_name FROM ext_orders e JOIN customers c ON e.customer_id = c.customer_id;

Document ControlVersionDateAuthorChanges1.02025-01-29Data Engineering TeamInitial document
This document is maintained by the Data Engineering Team.

