Snowflake Snowpark Development Guide
Document InformationFieldValueVersion1.0Last Updated2025-01-29ClassificationInternal UseOwnerData Engineering Team
1. Executive Summary
Snowpark enables developers to write data pipelines and transformations using Python, Java, or Scala directly within Snowflake. This guide covers Snowpark setup, DataFrame operations, User-Defined Functions (UDFs), and best practices for building production-grade data applications.
2. Snowpark Architecture
┌───┐
│ SNOWPARK ARCHITECTURE │
├───┤
│ │
│ CLIENT ENVIRONMENT SNOWFLAKE EXECUTION │
│ ┌─────────────────────────────┐ ┌─────────────────────────────┐ │
│ │ │ │ │ │
│ │ ┌───────────────────────┐ │ │ ┌───────────────────────┐ │ │
│ │ │ Python/Java/Scala │ │ │ │ Query Optimizer │ │ │
│ │ │ Application │ │ │ │ │ │ │
│ │ └───────────┬───────────┘ │ │ │ • Plan optimization │ │ │
│ │ │ │ │ │ • Predicate pushdown │ │ │
│ │ ▼ │ │ │ • Join reordering │ │ │
│ │ ┌───────────────────────┐ │ │ └───────────┬───────────┘ │ │
│ │ │ Snowpark Library │ │ │ │ │ │
│ │ │ │ │ SQL │ ▼ │ │
│ │ │ • DataFrame API │──┼──────────► ┌───────────────────────┐ │ │
│ │ │ • UDF/UDTF Support │ │ │ │ Virtual Warehouse │ │ │
│ │ │ • Session Management │ │ │ │ │ │ │
│ │ └───────────────────────┘ │ │ │ • Execute transforms │ │ │
│ │ │ │ │ • Run UDFs/UDTFs │ │ │
│ └─────────────────────────────┘ │ │ • Process data │ │ │
│ │ └───────────────────────┘ │ │
│ KEY BENEFITS: │ │ │
│ • Familiar Python/Java/Scala syntax │ Results returned to │ │
│ • No data movement for processing │ client or stored in │ │
│ • Pushdown optimization │ Snowflake tables │ │
│ • Secure execution in Snowflake │ │ │
│ └─────────────────────────────┘ │
└───┘

3. Getting Started with Snowpark
3.1 Environment Setup
Install Snowpark for Python
pip install snowflake-snowpark-python[pandas]

from snowflake.snowpark import Session
from snowflake.snowpark.functions import col, lit, when, sum as sum_, avg, count
from snowflake.snowpark.types import StructType, StructField, StringType, IntegerType, FloatType

Connection parameters
connection_parameters = {
 "account": "your_account",
 "user": "your_user",
 "password": "your_password", # Or use authenticator for SSO
 "warehouse": "your_warehouse",
 "database": "your_database",
 "schema": "your_schema",
 "role": "your_role"
}

Create session
session = Session.builder.configs(connection_parameters).create()

Verify connection
print(f"Current database: {session.get_current_database()}")
print(f"Current schema: {session.get_current_schema()}")
print(f"Current warehouse: {session.get_current_warehouse()}")

3.2 Session Management Best Practices
from contextlib import contextmanager
from snowflake.snowpark import Session

@contextmanager
def snowpark_session(connection_params):
 """Context manager for Snowpark sessions."""
 session = None
 try:
 session = Session.builder.configs(connection_params).create()
 yield session
 finally:
 if session:
 session.close()

Usage
with snowpark_session(connection_parameters) as session:
 df = session.table("my_table")
 result = df.collect()

For Notebooks/Stored Procedures - use existing session
def get_active_session():
 """Get active session in Snowflake environment."""
 from snowflake.snowpark.context import get_active_session
 return get_active_session()

4. DataFrame Operations
4.1 Creating DataFrames
From table
orders_df = session.table("raw_db.public.orders")

From SQL query
custom_df = session.sql("""
 SELECT order_id, customer_id, amount
 FROM orders
 WHERE order_date >= '2025-01-01'
""")

From local data
data = [
 (1, "Alice", 100.0),
 (2, "Bob", 200.0),
 (3, "Charlie", 150.0)
]
schema = StructType([
 StructField("id", IntegerType()),
 StructField("name", StringType()),
 StructField("amount", FloatType())
])
local_df = session.create_dataframe(data, schema)

From Pandas DataFrame
import pandas as pd
pandas_df = pd.DataFrame({
 "id": [1, 2, 3],
 "name": ["Alice", "Bob", "Charlie"],
 "amount": [100.0, 200.0, 150.0]
})
snowpark_df = session.create_dataframe(pandas_df)

4.2 DataFrame Transformations
from snowflake.snowpark.functions import (
 col, lit, when, sum as sum_, avg, count, max as max_, min as min_,
 year, month, dayofmonth, to_date, datediff, current_date,
 upper, lower, trim, concat, substring,
 row_number, rank, dense_rank, lag, lead
)
from snowflake.snowpark import Window

Basic selections and filters
result = (
 orders_df
 .select(
 col("order_id"),
 col("customer_id"),
 col("amount"),
 col("order_date")
)
 .filter(col("amount") > 100)
 .filter(col("order_date") >= "2025-01-01")
)

Column operations
result = orders_df.select(
 col("order_id"),
 col("amount"),
 (col("amount") * 0.1).alias("tax"),
 (col("amount") * 1.1).alias("total_with_tax"),
 when(col("amount") > 1000, "High")
 .when(col("amount") > 500, "Medium")
 .otherwise("Low").alias("order_tier")
)

String operations
customers_df = session.table("customers")
result = customers_df.select(
 col("customer_id"),
 upper(col("customer_name")).alias("name_upper"),
 lower(col("email")).alias("email_lower"),
 trim(col("address")).alias("address_clean"),
 concat(col("first_name"), lit(" "), col("last_name")).alias("full_name")
)

Date operations
result = orders_df.select(
 col("order_id"),
 col("order_date"),
 year(col("order_date")).alias("order_year"),
 month(col("order_date")).alias("order_month"),
 dayofmonth(col("order_date")).alias("order_day"),
 datediff("day", col("order_date"), current_date()).alias("days_since_order")
)

4.3 Aggregations
Basic aggregations
summary = (
 orders_df
 .group_by(col("customer_id"))
 .agg(
 count(col("order_id")).alias("order_count"),
 sum_(col("amount")).alias("total_spend"),
 avg(col("amount")).alias("avg_order_value"),
 max_(col("amount")).alias("max_order"),
 min_(col("order_date")).alias("first_order_date"),
 max_(col("order_date")).alias("last_order_date")
)
)

Multi-level aggregation
regional_summary = (
 orders_df
 .join(customers_df, orders_df["customer_id"] == customers_df["customer_id"])
 .group_by(
 col("region"),
 year(col("order_date")).alias("order_year"),
 month(col("order_date")).alias("order_month")
)
 .agg(
 count(col("order_id")).alias("order_count"),
 sum_(col("amount")).alias("total_revenue")
)
 .sort(col("region"), col("order_year"), col("order_month"))
)

4.4 Window Functions
from snowflake.snowpark import Window

Define window specifications
customer_window = Window.partition_by(col("customer_id")).order_by(col("order_date"))
rank_window = Window.partition_by(col("region")).order_by(col("amount").desc())

Apply window functions
result = orders_df.select(
 col("order_id"),
 col("customer_id"),
 col("region"),
 col("order_date"),
 col("amount"),
 # Row number within customer
 row_number().over(customer_window).alias("order_sequence"),
 # Running total
 sum_(col("amount")).over(
 Window.partition_by(col("customer_id"))
 .order_by(col("order_date"))
 .rows_between(Window.UNBOUNDED_PRECEDING, Window.CURRENT_ROW)
).alias("running_total"),
 # Previous order amount
 lag(col("amount"), 1).over(customer_window).alias("prev_amount"),
 # Rank within region
 rank().over(rank_window).alias("region_rank")
)

Filter using window results (like QUALIFY)
top_orders_per_region = (
 orders_df
 .with_column("rank", rank().over(rank_window))
 .filter(col("rank") <= 10)
 .drop("rank")
)

4.5 Joins
Inner join
orders_with_customers = orders_df.join(
 customers_df,
 orders_df["customer_id"] == customers_df["customer_id"],
 "inner"
).select(
 orders_df["order_id"],
 orders_df["amount"],
 customers_df["customer_name"],
 customers_df["region"]
)

Left join with null handling
from snowflake.snowpark.functions import coalesce

orders_with_products = (
 orders_df
 .join(products_df, orders_df["product_id"] == products_df["product_id"], "left")
 .select(
 orders_df["order_id"],
 orders_df["amount"],
 coalesce(products_df["product_name"], lit("Unknown")).alias("product_name"),
 coalesce(products_df["category"], lit("Uncategorized")).alias("category")
)
)

Multiple joins
full_orders = (
 orders_df
 .join(customers_df, "customer_id", "inner")
 .join(products_df, "product_id", "left")
 .join(regions_df, "region_id", "left")
 .select(
 orders_df["order_id"],
 orders_df["order_date"],
 orders_df["amount"],
 customers_df["customer_name"],
 products_df["product_name"],
 regions_df["region_name"]
)
)

5. User-Defined Functions (UDFs)
5.1 Scalar UDFs
from snowflake.snowpark.functions import udf
from snowflake.snowpark.types import StringType, FloatType, IntegerType

Simple UDF
@udf(return_type=StringType(), input_types=[StringType()])
def clean_phone(phone: str) -> str:
 """Remove non-numeric characters from phone number."""
 if phone is None:
 return None
 return ''.join(filter(str.isdigit, phone))

UDF with multiple inputs
@udf(return_type=FloatType(), input_types=[FloatType(), FloatType()])
def calculate_discount(amount: float, discount_rate: float) -> float:
 """Calculate discounted amount."""
 if amount is None or discount_rate is None:
 return None
 return amount * (1 - discount_rate)

Apply UDF to DataFrame
result = customers_df.select(
 col("customer_id"),
 col("phone"),
 clean_phone(col("phone")).alias("phone_clean")
)

result = orders_df.select(
 col("order_id"),
 col("amount"),
 calculate_discount(col("amount"), lit(0.1)).alias("discounted_amount")
)

5.2 Vectorized UDFs (Pandas UDFs)
from snowflake.snowpark.functions import pandas_udf
from snowflake.snowpark.types import PandasSeriesType, PandasDataFrameType
import pandas as pd

Vectorized UDF for better performance
@pandas_udf(return_type=PandasSeriesType(FloatType()), input_types=[PandasSeriesType(FloatType())])
def normalize_amount(amount_series: pd.Series) -> pd.Series:
 """Normalize amounts using z-score."""
 mean = amount_series.mean()
 std = amount_series.std()
 return (amount_series - mean) / std

Apply vectorized UDF
result = orders_df.select(
 col("order_id"),
 col("amount"),
 normalize_amount(col("amount")).alias("normalized_amount")
)

5.3 Table Functions (UDTFs)
from snowflake.snowpark.functions import udtf
from snowflake.snowpark.types import StructType, StructField, StringType, IntegerType

Define UDTF class
class SplitString:
 def process(self, text: str, delimiter: str):
 if text:
 parts = text.split(delimiter)
 for idx, part in enumerate(parts):
 yield (idx, part.strip())

Register UDTF
split_udtf = udtf(
 SplitString,
 output_schema=StructType([
 StructField("index", IntegerType()),
 StructField("value", StringType())
]),
 input_types=[StringType(), StringType()]
)

Use UDTF
result = (
 session.table("products")
 .join_table_function(split_udtf(col("tags"), lit(",")))
 .select(
 col("product_id"),
 col("product_name"),
 col("index").alias("tag_index"),
 col("value").alias("tag")
)
)

5.4 Registering Permanent UDFs
Register UDF permanently in Snowflake
session.udf.register(
 func=clean_phone,
 name="clean_phone_udf",
 stage_location="@my_stage/udfs/",
 is_permanent=True,
 replace=True,
 packages=[] # Add required packages
)

Call registered UDF from SQL
session.sql("""
 SELECT customer_id, clean_phone_udf(phone) as clean_phone
 FROM customers
""").show()

6. Stored Procedures
6.1 Creating Stored Procedures
from snowflake.snowpark.functions import sproc
from snowflake.snowpark.types import StringType, IntegerType

Define stored procedure
def process_daily_orders(session: Session, target_date: str) -> str:
 """Process orders for a specific date."""

 # Read source data
 orders_df = session.table("raw_orders").filter(
 col("order_date") == target_date
)

 # Transform data
 processed_df = orders_df.select(
 col("order_id"),
 col("customer_id"),
 col("amount"),
 col("order_date"),
 current_timestamp().alias("processed_at")
)

 # Write to target
 processed_df.write.mode("append").save_as_table("processed_orders")

 # Return count
 count = processed_df.count()
 return f"Processed {count} orders for {target_date}"

Register stored procedure
session.sproc.register(
 func=process_daily_orders,
 name="process_daily_orders_sp",
 stage_location="@my_stage/sprocs/",
 is_permanent=True,
 replace=True,
 packages=["snowflake-snowpark-python"]
)

Call stored procedure
result = session.call("process_daily_orders_sp", "2025-01-29")
print(result)

6.2 Stored Procedures with Error Handling
def robust_data_pipeline(session: Session, source_table: str, target_table: str) -> str:
 """Data pipeline with comprehensive error handling."""
 import json
 from datetime import datetime

 result = {
 "status": "success",
 "start_time": datetime.now().isoformat(),
 "records_processed": 0,
 "errors": []
 }

 try:
 # Validate source exists
 try:
 source_df = session.table(source_table)
 source_count = source_df.count()
 except Exception as e:
 result["status"] = "failed"
 result["errors"].append(f"Source table error: {str(e)}")
 return json.dumps(result)

 # Transform data
 transformed_df = (
 source_df
 .filter(col("is_valid") == True)
 .select(
 col("id"),
 col("name"),
 col("value"),
 current_timestamp().alias("processed_at")
)
)

 # Write to target
 transformed_df.write.mode("overwrite").save_as_table(target_table)

 # Get processed count
 result["records_processed"] = transformed_df.count()

 except Exception as e:
 result["status"] = "failed"
 result["errors"].append(str(e))

 result["end_time"] = datetime.now().isoformat()
 return json.dumps(result)

7. Working with Stages and Files
7.1 Reading Files with Snowpark
Read CSV from stage
csv_df = session.read.option("field_delimiter", ",").option("skip_header", 1).csv("@my_stage/data/orders.csv")

Read JSON from stage
json_df = session.read.json("@my_stage/data/events.json")

Read Parquet from stage
parquet_df = session.read.parquet("@my_stage/data/customers/")

Read with schema inference
csv_df = session.read.option("infer_schema", True).csv("@my_stage/data/")

7.2 Writing Files to Stage
Write DataFrame to stage as Parquet
orders_df.write.mode("overwrite").parquet("@my_stage/output/orders/")

Write as CSV
orders_df.write.mode("overwrite").option("header", True).csv("@my_stage/output/orders_csv/")

Copy into from DataFrame
orders_df.write.copy_into_location(
 "@my_stage/exports/",
 file_format_type="csv",
 format_type_options={"compression": "gzip"},
 header=True,
 overwrite=True
)

8. Best Practices
8.1 Performance Optimization
1. Push filters down early
BAD
result = orders_df.join(customers_df, "customer_id").filter(col("amount") > 1000)

GOOD
result = orders_df.filter(col("amount") > 1000).join(customers_df, "customer_id")

2. Select only needed columns
BAD
result = session.table("large_table").filter(col("status") == "active")

GOOD
result = (
 session.table("large_table")
 .select("id", "name", "status")
 .filter(col("status") == "active")
)

3. Use caching for reused DataFrames
orders_df = session.table("orders").cache_result()
summary1 = orders_df.group_by("region").agg(sum_(col("amount")))
summary2 = orders_df.group_by("category").agg(count("*"))

4. Batch UDF operations
@pandas_udf(...) # Prefer vectorized UDFs over scalar UDFs for large datasets

8.2 Code Organization
Organize transformations in modules
transformations/orders.py

from snowflake.snowpark import Session, DataFrame
from snowflake.snowpark.functions import col, sum as sum_, avg

class OrderTransformations:
 def __init__(self, session: Session):
 self.session = session

 def get_orders(self, start_date: str, end_date: str) -> DataFrame:
 """Get orders within date range."""
 return (
 self.session.table("raw_orders")
 .filter(col("order_date") >= start_date)
 .filter(col("order_date") <= end_date)
)

 def enrich_orders(self, orders_df: DataFrame) -> DataFrame:
 """Enrich orders with customer and product data."""
 customers_df = self.session.table("customers")
 products_df = self.session.table("products")

 return (
 orders_df
 .join(customers_df, "customer_id")
 .join(products_df, "product_id")
)

 def aggregate_by_region(self, orders_df: DataFrame) -> DataFrame:
 """Aggregate orders by region."""
 return (
 orders_df
 .group_by("region")
 .agg(
 sum_(col("amount")).alias("total_revenue"),
 avg(col("amount")).alias("avg_order_value")
)
)

8.3 Testing Snowpark Code
import pytest
from snowflake.snowpark import Session

@pytest.fixture(scope="module")
def session():
 """Create test session."""
 session = Session.builder.configs(test_connection_params).create()
 yield session
 session.close()

def test_order_transformations(session):
 """Test order transformation logic."""
 # Create test data
 test_data = [
 (1, "customer1", 100.0, "2025-01-01"),
 (2, "customer2", 200.0, "2025-01-02"),
]
 test_df = session.create_dataframe(test_data, ["order_id", "customer_id", "amount", "order_date"])

 # Apply transformation
 result = test_df.filter(col("amount") > 150)

 # Assert
 assert result.count() == 1
 assert result.collect()[0]["order_id"] == 2

9. Integration Patterns
9.1 Snowpark with dbt
dbt_project.yml - Using Snowpark Python models
models:
 my_project:
 snowpark_models:
 +materialized: table
 +language: python

models/snowpark_models/customer_metrics.py
def model(dbt, session):
 orders_df = dbt.ref("stg_orders")
 customers_df = dbt.ref("stg_customers")

 result = (
 orders_df
 .join(customers_df, "customer_id")
 .group_by("customer_id", "customer_name")
 .agg(
 sum_(col("amount")).alias("total_spend"),
 count("order_id").alias("order_count")
)
)

 return result

Document ControlVersionDateAuthorChanges1.02025-01-29Data Engineering TeamInitial document
This document is maintained by the Data Engineering Team.

