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1. Executive Summary
Snowpark enables developers to write data pipelines and transformations using Python, Java, or Scala directly within Snowflake. This guide covers Snowpark setup, DataFrame operations, User-Defined Functions (UDFs), and best practices for building production-grade data applications.
2. Snowpark Architecture
┌─────────────────────────────────────────────────────────────────────────────┐
│                    SNOWPARK ARCHITECTURE                                     │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                              │
│  CLIENT ENVIRONMENT                        SNOWFLAKE EXECUTION               │
│  ┌─────────────────────────────┐          ┌─────────────────────────────┐   │
│  │                             │          │                             │   │
│  │  ┌───────────────────────┐  │          │  ┌───────────────────────┐  │   │
│  │  │   Python/Java/Scala   │  │          │  │   Query Optimizer     │  │   │
│  │  │      Application      │  │          │  │                       │  │   │
│  │  └───────────┬───────────┘  │          │  │  • Plan optimization  │  │   │
│  │              │              │          │  │  • Predicate pushdown │  │   │
│  │              ▼              │          │  │  • Join reordering    │  │   │
│  │  ┌───────────────────────┐  │          │  └───────────┬───────────┘  │   │
│  │  │   Snowpark Library    │  │          │              │              │   │
│  │  │                       │  │   SQL    │              ▼              │   │
│  │  │  • DataFrame API      │──┼──────────►  ┌───────────────────────┐  │   │
│  │  │  • UDF/UDTF Support   │  │          │  │  Virtual Warehouse    │  │   │
│  │  │  • Session Management │  │          │  │                       │  │   │
│  │  └───────────────────────┘  │          │  │  • Execute transforms │  │   │
│  │                             │          │  │  • Run UDFs/UDTFs     │  │   │
│  └─────────────────────────────┘          │  │  • Process data       │  │   │
│                                           │  └───────────────────────┘  │   │
│  KEY BENEFITS:                            │                             │   │
│  • Familiar Python/Java/Scala syntax      │  Results returned to       │   │
│  • No data movement for processing        │  client or stored in       │   │
│  • Pushdown optimization                  │  Snowflake tables          │   │
│  • Secure execution in Snowflake          │                             │   │
│                                           └─────────────────────────────┘   │
└─────────────────────────────────────────────────────────────────────────────┘

3. Getting Started with Snowpark
3.1 Environment Setup
# Install Snowpark for Python
# pip install snowflake-snowpark-python[pandas]

from snowflake.snowpark import Session
from snowflake.snowpark.functions import col, lit, when, sum as sum_, avg, count
from snowflake.snowpark.types import StructType, StructField, StringType, IntegerType, FloatType

# Connection parameters
connection_parameters = {
    "account": "your_account",
    "user": "your_user",
    "password": "your_password",  # Or use authenticator for SSO
    "warehouse": "your_warehouse",
    "database": "your_database",
    "schema": "your_schema",
    "role": "your_role"
}

# Create session
session = Session.builder.configs(connection_parameters).create()

# Verify connection
print(f"Current database: {session.get_current_database()}")
print(f"Current schema: {session.get_current_schema()}")
print(f"Current warehouse: {session.get_current_warehouse()}")

3.2 Session Management Best Practices
from contextlib import contextmanager
from snowflake.snowpark import Session

@contextmanager
def snowpark_session(connection_params):
    """Context manager for Snowpark sessions."""
    session = None
    try:
        session = Session.builder.configs(connection_params).create()
        yield session
    finally:
        if session:
            session.close()

# Usage
with snowpark_session(connection_parameters) as session:
    df = session.table("my_table")
    result = df.collect()

# For Notebooks/Stored Procedures - use existing session
def get_active_session():
    """Get active session in Snowflake environment."""
    from snowflake.snowpark.context import get_active_session
    return get_active_session()

4. DataFrame Operations
4.1 Creating DataFrames
# From table
orders_df = session.table("raw_db.public.orders")

# From SQL query
custom_df = session.sql("""
    SELECT order_id, customer_id, amount
    FROM orders
    WHERE order_date >= '2025-01-01'
""")

# From local data
data = [
    (1, "Alice", 100.0),
    (2, "Bob", 200.0),
    (3, "Charlie", 150.0)
]
schema = StructType([
    StructField("id", IntegerType()),
    StructField("name", StringType()),
    StructField("amount", FloatType())
])
local_df = session.create_dataframe(data, schema)

# From Pandas DataFrame
import pandas as pd
pandas_df = pd.DataFrame({
    "id": [1, 2, 3],
    "name": ["Alice", "Bob", "Charlie"],
    "amount": [100.0, 200.0, 150.0]
})
snowpark_df = session.create_dataframe(pandas_df)

4.2 DataFrame Transformations
from snowflake.snowpark.functions import (
    col, lit, when, sum as sum_, avg, count, max as max_, min as min_,
    year, month, dayofmonth, to_date, datediff, current_date,
    upper, lower, trim, concat, substring,
    row_number, rank, dense_rank, lag, lead
)
from snowflake.snowpark import Window

# Basic selections and filters
result = (
    orders_df
    .select(
        col("order_id"),
        col("customer_id"),
        col("amount"),
        col("order_date")
    )
    .filter(col("amount") > 100)
    .filter(col("order_date") >= "2025-01-01")
)

# Column operations
result = orders_df.select(
    col("order_id"),
    col("amount"),
    (col("amount") * 0.1).alias("tax"),
    (col("amount") * 1.1).alias("total_with_tax"),
    when(col("amount") > 1000, "High")
        .when(col("amount") > 500, "Medium")
        .otherwise("Low").alias("order_tier")
)

# String operations
customers_df = session.table("customers")
result = customers_df.select(
    col("customer_id"),
    upper(col("customer_name")).alias("name_upper"),
    lower(col("email")).alias("email_lower"),
    trim(col("address")).alias("address_clean"),
    concat(col("first_name"), lit(" "), col("last_name")).alias("full_name")
)

# Date operations
result = orders_df.select(
    col("order_id"),
    col("order_date"),
    year(col("order_date")).alias("order_year"),
    month(col("order_date")).alias("order_month"),
    dayofmonth(col("order_date")).alias("order_day"),
    datediff("day", col("order_date"), current_date()).alias("days_since_order")
)

4.3 Aggregations
# Basic aggregations
summary = (
    orders_df
    .group_by(col("customer_id"))
    .agg(
        count(col("order_id")).alias("order_count"),
        sum_(col("amount")).alias("total_spend"),
        avg(col("amount")).alias("avg_order_value"),
        max_(col("amount")).alias("max_order"),
        min_(col("order_date")).alias("first_order_date"),
        max_(col("order_date")).alias("last_order_date")
    )
)

# Multi-level aggregation
regional_summary = (
    orders_df
    .join(customers_df, orders_df["customer_id"] == customers_df["customer_id"])
    .group_by(
        col("region"),
        year(col("order_date")).alias("order_year"),
        month(col("order_date")).alias("order_month")
    )
    .agg(
        count(col("order_id")).alias("order_count"),
        sum_(col("amount")).alias("total_revenue")
    )
    .sort(col("region"), col("order_year"), col("order_month"))
)

4.4 Window Functions
from snowflake.snowpark import Window

# Define window specifications
customer_window = Window.partition_by(col("customer_id")).order_by(col("order_date"))
rank_window = Window.partition_by(col("region")).order_by(col("amount").desc())

# Apply window functions
result = orders_df.select(
    col("order_id"),
    col("customer_id"),
    col("region"),
    col("order_date"),
    col("amount"),
    # Row number within customer
    row_number().over(customer_window).alias("order_sequence"),
    # Running total
    sum_(col("amount")).over(
        Window.partition_by(col("customer_id"))
        .order_by(col("order_date"))
        .rows_between(Window.UNBOUNDED_PRECEDING, Window.CURRENT_ROW)
    ).alias("running_total"),
    # Previous order amount
    lag(col("amount"), 1).over(customer_window).alias("prev_amount"),
    # Rank within region
    rank().over(rank_window).alias("region_rank")
)

# Filter using window results (like QUALIFY)
top_orders_per_region = (
    orders_df
    .with_column("rank", rank().over(rank_window))
    .filter(col("rank") <= 10)
    .drop("rank")
)

4.5 Joins
# Inner join
orders_with_customers = orders_df.join(
    customers_df,
    orders_df["customer_id"] == customers_df["customer_id"],
    "inner"
).select(
    orders_df["order_id"],
    orders_df["amount"],
    customers_df["customer_name"],
    customers_df["region"]
)

# Left join with null handling
from snowflake.snowpark.functions import coalesce

orders_with_products = (
    orders_df
    .join(products_df, orders_df["product_id"] == products_df["product_id"], "left")
    .select(
        orders_df["order_id"],
        orders_df["amount"],
        coalesce(products_df["product_name"], lit("Unknown")).alias("product_name"),
        coalesce(products_df["category"], lit("Uncategorized")).alias("category")
    )
)

# Multiple joins
full_orders = (
    orders_df
    .join(customers_df, "customer_id", "inner")
    .join(products_df, "product_id", "left")
    .join(regions_df, "region_id", "left")
    .select(
        orders_df["order_id"],
        orders_df["order_date"],
        orders_df["amount"],
        customers_df["customer_name"],
        products_df["product_name"],
        regions_df["region_name"]
    )
)

5. User-Defined Functions (UDFs)
5.1 Scalar UDFs
from snowflake.snowpark.functions import udf
from snowflake.snowpark.types import StringType, FloatType, IntegerType

# Simple UDF
@udf(return_type=StringType(), input_types=[StringType()])
def clean_phone(phone: str) -> str:
    """Remove non-numeric characters from phone number."""
    if phone is None:
        return None
    return ''.join(filter(str.isdigit, phone))

# UDF with multiple inputs
@udf(return_type=FloatType(), input_types=[FloatType(), FloatType()])
def calculate_discount(amount: float, discount_rate: float) -> float:
    """Calculate discounted amount."""
    if amount is None or discount_rate is None:
        return None
    return amount * (1 - discount_rate)

# Apply UDF to DataFrame
result = customers_df.select(
    col("customer_id"),
    col("phone"),
    clean_phone(col("phone")).alias("phone_clean")
)

result = orders_df.select(
    col("order_id"),
    col("amount"),
    calculate_discount(col("amount"), lit(0.1)).alias("discounted_amount")
)

5.2 Vectorized UDFs (Pandas UDFs)
from snowflake.snowpark.functions import pandas_udf
from snowflake.snowpark.types import PandasSeriesType, PandasDataFrameType
import pandas as pd

# Vectorized UDF for better performance
@pandas_udf(return_type=PandasSeriesType(FloatType()), input_types=[PandasSeriesType(FloatType())])
def normalize_amount(amount_series: pd.Series) -> pd.Series:
    """Normalize amounts using z-score."""
    mean = amount_series.mean()
    std = amount_series.std()
    return (amount_series - mean) / std

# Apply vectorized UDF
result = orders_df.select(
    col("order_id"),
    col("amount"),
    normalize_amount(col("amount")).alias("normalized_amount")
)

5.3 Table Functions (UDTFs)
from snowflake.snowpark.functions import udtf
from snowflake.snowpark.types import StructType, StructField, StringType, IntegerType

# Define UDTF class
class SplitString:
    def process(self, text: str, delimiter: str):
        if text:
            parts = text.split(delimiter)
            for idx, part in enumerate(parts):
                yield (idx, part.strip())

# Register UDTF
split_udtf = udtf(
    SplitString,
    output_schema=StructType([
        StructField("index", IntegerType()),
        StructField("value", StringType())
    ]),
    input_types=[StringType(), StringType()]
)

# Use UDTF
result = (
    session.table("products")
    .join_table_function(split_udtf(col("tags"), lit(",")))
    .select(
        col("product_id"),
        col("product_name"),
        col("index").alias("tag_index"),
        col("value").alias("tag")
    )
)

5.4 Registering Permanent UDFs
# Register UDF permanently in Snowflake
session.udf.register(
    func=clean_phone,
    name="clean_phone_udf",
    stage_location="@my_stage/udfs/",
    is_permanent=True,
    replace=True,
    packages=[]  # Add required packages
)

# Call registered UDF from SQL
session.sql("""
    SELECT customer_id, clean_phone_udf(phone) as clean_phone
    FROM customers
""").show()

6. Stored Procedures
6.1 Creating Stored Procedures
from snowflake.snowpark.functions import sproc
from snowflake.snowpark.types import StringType, IntegerType

# Define stored procedure
def process_daily_orders(session: Session, target_date: str) -> str:
    """Process orders for a specific date."""

    # Read source data
    orders_df = session.table("raw_orders").filter(
        col("order_date") == target_date
    )

    # Transform data
    processed_df = orders_df.select(
        col("order_id"),
        col("customer_id"),
        col("amount"),
        col("order_date"),
        current_timestamp().alias("processed_at")
    )

    # Write to target
    processed_df.write.mode("append").save_as_table("processed_orders")

    # Return count
    count = processed_df.count()
    return f"Processed {count} orders for {target_date}"

# Register stored procedure
session.sproc.register(
    func=process_daily_orders,
    name="process_daily_orders_sp",
    stage_location="@my_stage/sprocs/",
    is_permanent=True,
    replace=True,
    packages=["snowflake-snowpark-python"]
)

# Call stored procedure
result = session.call("process_daily_orders_sp", "2025-01-29")
print(result)

6.2 Stored Procedures with Error Handling
def robust_data_pipeline(session: Session, source_table: str, target_table: str) -> str:
    """Data pipeline with comprehensive error handling."""
    import json
    from datetime import datetime

    result = {
        "status": "success",
        "start_time": datetime.now().isoformat(),
        "records_processed": 0,
        "errors": []
    }

    try:
        # Validate source exists
        try:
            source_df = session.table(source_table)
            source_count = source_df.count()
        except Exception as e:
            result["status"] = "failed"
            result["errors"].append(f"Source table error: {str(e)}")
            return json.dumps(result)

        # Transform data
        transformed_df = (
            source_df
            .filter(col("is_valid") == True)
            .select(
                col("id"),
                col("name"),
                col("value"),
                current_timestamp().alias("processed_at")
            )
        )

        # Write to target
        transformed_df.write.mode("overwrite").save_as_table(target_table)

        # Get processed count
        result["records_processed"] = transformed_df.count()

    except Exception as e:
        result["status"] = "failed"
        result["errors"].append(str(e))

    result["end_time"] = datetime.now().isoformat()
    return json.dumps(result)

7. Working with Stages and Files
7.1 Reading Files with Snowpark
# Read CSV from stage
csv_df = session.read.option("field_delimiter", ",").option("skip_header", 1).csv("@my_stage/data/orders.csv")

# Read JSON from stage
json_df = session.read.json("@my_stage/data/events.json")

# Read Parquet from stage
parquet_df = session.read.parquet("@my_stage/data/customers/")

# Read with schema inference
csv_df = session.read.option("infer_schema", True).csv("@my_stage/data/")

7.2 Writing Files to Stage
# Write DataFrame to stage as Parquet
orders_df.write.mode("overwrite").parquet("@my_stage/output/orders/")

# Write as CSV
orders_df.write.mode("overwrite").option("header", True).csv("@my_stage/output/orders_csv/")

# Copy into from DataFrame
orders_df.write.copy_into_location(
    "@my_stage/exports/",
    file_format_type="csv",
    format_type_options={"compression": "gzip"},
    header=True,
    overwrite=True
)

8. Best Practices
8.1 Performance Optimization
# 1. Push filters down early
# BAD
result = orders_df.join(customers_df, "customer_id").filter(col("amount") > 1000)

# GOOD
result = orders_df.filter(col("amount") > 1000).join(customers_df, "customer_id")

# 2. Select only needed columns
# BAD
result = session.table("large_table").filter(col("status") == "active")

# GOOD
result = (
    session.table("large_table")
    .select("id", "name", "status")
    .filter(col("status") == "active")
)

# 3. Use caching for reused DataFrames
orders_df = session.table("orders").cache_result()
summary1 = orders_df.group_by("region").agg(sum_(col("amount")))
summary2 = orders_df.group_by("category").agg(count("*"))

# 4. Batch UDF operations
@pandas_udf(...)  # Prefer vectorized UDFs over scalar UDFs for large datasets

8.2 Code Organization
# Organize transformations in modules
# transformations/orders.py

from snowflake.snowpark import Session, DataFrame
from snowflake.snowpark.functions import col, sum as sum_, avg

class OrderTransformations:
    def __init__(self, session: Session):
        self.session = session

    def get_orders(self, start_date: str, end_date: str) -> DataFrame:
        """Get orders within date range."""
        return (
            self.session.table("raw_orders")
            .filter(col("order_date") >= start_date)
            .filter(col("order_date") <= end_date)
        )

    def enrich_orders(self, orders_df: DataFrame) -> DataFrame:
        """Enrich orders with customer and product data."""
        customers_df = self.session.table("customers")
        products_df = self.session.table("products")

        return (
            orders_df
            .join(customers_df, "customer_id")
            .join(products_df, "product_id")
        )

    def aggregate_by_region(self, orders_df: DataFrame) -> DataFrame:
        """Aggregate orders by region."""
        return (
            orders_df
            .group_by("region")
            .agg(
                sum_(col("amount")).alias("total_revenue"),
                avg(col("amount")).alias("avg_order_value")
            )
        )

8.3 Testing Snowpark Code
import pytest
from snowflake.snowpark import Session

@pytest.fixture(scope="module")
def session():
    """Create test session."""
    session = Session.builder.configs(test_connection_params).create()
    yield session
    session.close()

def test_order_transformations(session):
    """Test order transformation logic."""
    # Create test data
    test_data = [
        (1, "customer1", 100.0, "2025-01-01"),
        (2, "customer2", 200.0, "2025-01-02"),
    ]
    test_df = session.create_dataframe(test_data, ["order_id", "customer_id", "amount", "order_date"])

    # Apply transformation
    result = test_df.filter(col("amount") > 150)

    # Assert
    assert result.count() == 1
    assert result.collect()[0]["order_id"] == 2

9. Integration Patterns
9.1 Snowpark with dbt
# dbt_project.yml - Using Snowpark Python models
models:
  my_project:
    snowpark_models:
      +materialized: table
      +language: python

# models/snowpark_models/customer_metrics.py
def model(dbt, session):
    orders_df = dbt.ref("stg_orders")
    customers_df = dbt.ref("stg_customers")

    result = (
        orders_df
        .join(customers_df, "customer_id")
        .group_by("customer_id", "customer_name")
        .agg(
            sum_(col("amount")).alias("total_spend"),
            count("order_id").alias("order_count")
        )
    )

    return result
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