Snowflake Dynamic Tables Guide
Document InformationFieldValueVersion1.0Last Updated2025-01-29ClassificationInternal UseOwnerData Engineering Team
1. Executive Summary
Dynamic Tables are Snowflake's declarative data transformation feature that automatically maintains the results of a query as the underlying data changes. This guide covers creating, managing, and optimizing Dynamic Tables for building efficient, low-maintenance data pipelines.
Dynamic Tables vs. Other ApproachesFeatureDynamic TablesMaterialized ViewsTasks + StreamsRefreshAutomatic, declarativeAutomaticManual schedulingComplexitySimple SQL definitionLimited transformationsComplex orchestrationJoinsFull supportLimitedFull supportAggregationsFull supportFull supportFull supportDependenciesAutomatic DAGNoneManual definitionIncrementalAutomaticAutomaticManual implementation
2. Dynamic Tables Architecture
2.1 How Dynamic Tables Work
┌───┐
│ DYNAMIC TABLES ARCHITECTURE │
├───┤
│ │
│ ┌───┐ │
│ │ SOURCE TABLES │ │
│ │ │ │
│ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │ │
│ │ │ Orders │ │ Customers │ │ Products │ │ │
│ │ │ (Base) │ │ (Base) │ │ (Base) │ │ │
│ │ └──────┬──────┘ └──────┬──────┘ └──────┬──────┘ │ │
│ └─────────┼────────────────┼────────────────┼─────────────────────────┘ │
│ │ │ │ │
│ └────────────────┴────────────────┘ │
│ │ │
│ Snowflake monitors changes automatically │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ DYNAMIC TABLE (Bronze → Silver) │ │
│ │ │ │
│ │ CREATE DYNAMIC TABLE enriched_orders │ │
│ │ TARGET_LAG = '10 minutes' │ │
│ │ AS │ │
│ │ SELECT o.*, c.name, p.category │ │
│ │ FROM orders o │ │
│ │ JOIN customers c ON o.customer_id = c.id │ │
│ │ JOIN products p ON o.product_id = p.id; │ │
│ │ │ │
│ │ • Automatically refreshes when sources change │ │
│ │ • Incremental processing when possible │ │
│ │ • Target lag defines freshness SLA │ │
│ └──────────────────────────────┬──────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ DYNAMIC TABLE (Silver → Gold) │ │
│ │ │ │
│ │ CREATE DYNAMIC TABLE daily_sales_summary │ │
│ │ TARGET_LAG = '1 hour' │ │
│ │ AS │ │
│ │ SELECT DATE(order_date), category, SUM(amount) │ │
│ │ FROM enriched_orders -- References upstream DT │ │
│ │ GROUP BY 1, 2; │ │
│ │ │ │
│ │ • Chains automatically refresh in correct order │ │
│ │ • Snowflake builds dependency DAG │ │
│ └───┘ │
│ │
│ ┌───┐ │
│ │ AUTOMATIC REFRESH SCHEDULER │ │
│ │ │ │
│ │ • Monitors source table changes │ │
│ │ • Schedules refresh to meet TARGET_LAG │ │
│ │ • Uses serverless or warehouse compute │ │
│ │ • Optimizes for incremental when possible │ │
│ └───┘ │
│ │
└───┘

3. Creating Dynamic Tables
3.1 Basic Dynamic Table
-- Simple dynamic table with target lag
CREATE OR REPLACE DYNAMIC TABLE analytics_db.transforms.order_enriched
 TARGET_LAG = '10 minutes'
 WAREHOUSE = etl_wh
AS
SELECT
 o.order_id,
 o.order_date,
 o.amount,
 o.quantity,
 c.customer_name,
 c.customer_segment,
 c.region,
 p.product_name,
 p.category,
 p.subcategory
FROM raw_db.public.orders o
JOIN raw_db.public.customers c ON o.customer_id = c.customer_id
JOIN raw_db.public.products p ON o.product_id = p.product_id;

-- Dynamic table with downstream lag (inherits from upstream)
CREATE OR REPLACE DYNAMIC TABLE analytics_db.reports.daily_sales_summary
 TARGET_LAG = DOWNSTREAM -- Refreshes when downstream tables need it
 WAREHOUSE = etl_wh
AS
SELECT
 DATE_TRUNC('day', order_date) AS sale_date,
 region,
 category,
 COUNT(DISTINCT order_id) AS order_count,
 SUM(quantity) AS total_units,
 SUM(amount) AS total_revenue,
 AVG(amount) AS avg_order_value
FROM analytics_db.transforms.order_enriched
GROUP BY 1, 2, 3;

-- Dynamic table with specific refresh schedule
CREATE OR REPLACE DYNAMIC TABLE analytics_db.reports.weekly_summary
 TARGET_LAG = '1 day'
 WAREHOUSE = etl_wh
 REFRESH_MODE = FULL -- Force full refresh (vs incremental)
AS
SELECT
 DATE_TRUNC('week', sale_date) AS week_start,
 region,
 SUM(total_revenue) AS weekly_revenue
FROM analytics_db.reports.daily_sales_summary
GROUP BY 1, 2;

3.2 Advanced Dynamic Tables
-- Dynamic table with window functions
CREATE OR REPLACE DYNAMIC TABLE analytics_db.transforms.customer_metrics
 TARGET_LAG = '30 minutes'
 WAREHOUSE = etl_wh
AS
SELECT
 customer_id,
 customer_name,
 region,
 order_date,
 amount,
 -- Running totals
 SUM(amount) OVER (
 PARTITION BY customer_id
 ORDER BY order_date
 ROWS UNBOUNDED PRECEDING
) AS cumulative_spend,
 -- Moving averages
 AVG(amount) OVER (
 PARTITION BY customer_id
 ORDER BY order_date
 ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
) AS rolling_7_avg,
 -- Ranking
 ROW_NUMBER() OVER (
 PARTITION BY customer_id
 ORDER BY order_date DESC
) AS order_recency_rank
FROM analytics_db.transforms.order_enriched;

-- Dynamic table with QUALIFY for deduplication
CREATE OR REPLACE DYNAMIC TABLE analytics_db.transforms.latest_customer_order
 TARGET_LAG = '15 minutes'
 WAREHOUSE = etl_wh
AS
SELECT
 customer_id,
 customer_name,
 order_id,
 order_date,
 amount,
 category
FROM analytics_db.transforms.order_enriched
QUALIFY ROW_NUMBER() OVER (
 PARTITION BY customer_id
 ORDER BY order_date DESC
) = 1;

-- Dynamic table with semi-structured data
CREATE OR REPLACE DYNAMIC TABLE analytics_db.transforms.event_flattened
 TARGET_LAG = '5 minutes'
 WAREHOUSE = etl_wh
AS
SELECT
 event_id,
 event_type,
 user_id,
 event_timestamp,
 raw_data:device.type::VARCHAR AS device_type,
 raw_data:device.os::VARCHAR AS operating_system,
 raw_data:location.country::VARCHAR AS country,
 raw_data:location.city::VARCHAR AS city,
 f.value:item_id::VARCHAR AS item_id,
 f.value:quantity::INTEGER AS quantity
FROM raw_db.public.events,
LATERAL FLATTEN(input => raw_data:items, OUTER => TRUE) f;

4. Managing Dynamic Tables
4.1 Monitoring Dynamic Tables
-- View dynamic table metadata
SHOW DYNAMIC TABLES IN SCHEMA analytics_db.transforms;

-- Get detailed information
DESCRIBE DYNAMIC TABLE analytics_db.transforms.order_enriched;

-- Check refresh history
SELECT *
FROM TABLE(INFORMATION_SCHEMA.DYNAMIC_TABLE_REFRESH_HISTORY(
 NAME => 'analytics_db.transforms.order_enriched',
 DATE_RANGE_START => DATEADD('day', -7, CURRENT_DATE())
))
ORDER BY REFRESH_END_TIME DESC;

-- View refresh status and lag
SELECT
 NAME,
 DATABASE_NAME,
 SCHEMA_NAME,
 TARGET_LAG,
 REFRESH_MODE,
 SCHEDULING_STATE,
 LAST_REFRESH_TIME,
 DATA_TIMESTAMP,
 TIMESTAMPDIFF('minute', DATA_TIMESTAMP, CURRENT_TIMESTAMP()) AS current_lag_minutes
FROM TABLE(INFORMATION_SCHEMA.DYNAMIC_TABLES())
WHERE DATABASE_NAME = 'ANALYTICS_DB'
ORDER BY NAME;

-- Monitor refresh costs
SELECT
 NAME,
 REFRESH_START_TIME,
 REFRESH_END_TIME,
 TIMESTAMPDIFF('second', REFRESH_START_TIME, REFRESH_END_TIME) AS duration_seconds,
 STATISTICS:insertedRowCount AS rows_inserted,
 STATISTICS:deletedRowCount AS rows_deleted,
 STATISTICS:numCopyIntoFiles AS files_processed
FROM TABLE(INFORMATION_SCHEMA.DYNAMIC_TABLE_REFRESH_HISTORY(
 NAME => 'analytics_db.transforms.order_enriched'
))
ORDER BY REFRESH_START_TIME DESC
LIMIT 50;

4.2 Controlling Refresh Behavior
-- Suspend automatic refresh
ALTER DYNAMIC TABLE analytics_db.transforms.order_enriched SUSPEND;

-- Resume automatic refresh
ALTER DYNAMIC TABLE analytics_db.transforms.order_enriched RESUME;

-- Manually trigger refresh
ALTER DYNAMIC TABLE analytics_db.transforms.order_enriched REFRESH;

-- Change target lag
ALTER DYNAMIC TABLE analytics_db.transforms.order_enriched
 SET TARGET_LAG = '30 minutes';

-- Change warehouse
ALTER DYNAMIC TABLE analytics_db.transforms.order_enriched
 SET WAREHOUSE = larger_etl_wh;

-- Change refresh mode
ALTER DYNAMIC TABLE analytics_db.transforms.weekly_summary
 SET REFRESH_MODE = INCREMENTAL; -- or FULL

-- View dependency graph
SELECT *
FROM TABLE(INFORMATION_SCHEMA.DYNAMIC_TABLE_GRAPH_HISTORY())
WHERE TARGET_NAME LIKE '%order%';

5. Dynamic Table Pipelines
5.1 Multi-Layer Pipeline
-- Layer 1: Bronze → Silver (Cleansing)
CREATE OR REPLACE DYNAMIC TABLE analytics_db.silver.orders_cleaned
 TARGET_LAG = '5 minutes'
 WAREHOUSE = etl_wh
AS
SELECT
 order_id,
 customer_id,
 product_id,
 TRY_TO_NUMBER(quantity) AS quantity,
 TRY_TO_DECIMAL(amount, 18, 2) AS amount,
 TRY_TO_DATE(order_date) AS order_date,
 CURRENT_TIMESTAMP() AS processed_at
FROM raw_db.bronze.orders
WHERE order_id IS NOT NULL
 AND TRY_TO_NUMBER(quantity) > 0
 AND TRY_TO_DECIMAL(amount, 18, 2) > 0;

-- Layer 2: Silver → Silver (Enrichment)
CREATE OR REPLACE DYNAMIC TABLE analytics_db.silver.orders_enriched
 TARGET_LAG = '10 minutes'
 WAREHOUSE = etl_wh
AS
SELECT
 o.*,
 c.customer_name,
 c.customer_segment,
 c.region,
 p.product_name,
 p.category,
 p.unit_cost,
 o.amount - (o.quantity * p.unit_cost) AS profit
FROM analytics_db.silver.orders_cleaned o
LEFT JOIN analytics_db.dimensions.customers c ON o.customer_id = c.customer_id
LEFT JOIN analytics_db.dimensions.products p ON o.product_id = p.product_id;

-- Layer 3: Silver → Gold (Aggregation)
CREATE OR REPLACE DYNAMIC TABLE analytics_db.gold.daily_sales
 TARGET_LAG = '1 hour'
 WAREHOUSE = etl_wh
AS
SELECT
 order_date,
 region,
 category,
 customer_segment,
 COUNT(DISTINCT order_id) AS order_count,
 COUNT(DISTINCT customer_id) AS customer_count,
 SUM(quantity) AS total_units,
 SUM(amount) AS total_revenue,
 SUM(profit) AS total_profit,
 AVG(amount) AS avg_order_value
FROM analytics_db.silver.orders_enriched
GROUP BY 1, 2, 3, 4;

-- Layer 4: Gold → Gold (Further Aggregation)
CREATE OR REPLACE DYNAMIC TABLE analytics_db.gold.regional_summary
 TARGET_LAG = DOWNSTREAM
 WAREHOUSE = etl_wh
AS
SELECT
 region,
 DATE_TRUNC('month', order_date) AS month,
 SUM(total_revenue) AS monthly_revenue,
 SUM(total_profit) AS monthly_profit,
 SUM(order_count) AS monthly_orders,
 SUM(customer_count) AS unique_customers
FROM analytics_db.gold.daily_sales
GROUP BY 1, 2;

5.2 Handling Late-Arriving Data
-- Dynamic table that handles late data with lookback
CREATE OR REPLACE DYNAMIC TABLE analytics_db.transforms.orders_with_late_data
 TARGET_LAG = '15 minutes'
 WAREHOUSE = etl_wh
AS
SELECT
 order_id,
 order_date,
 customer_id,
 amount,
 -- Flag potentially late records
 CASE
 WHEN order_date < DATEADD('day', -7, CURRENT_DATE())
 THEN TRUE
 ELSE FALSE
 END AS is_late_arrival,
 CURRENT_TIMESTAMP() AS processed_at
FROM raw_db.bronze.orders
WHERE order_date >= DATEADD('day', -30, CURRENT_DATE()); -- 30-day lookback

6. Best Practices
6.1 Design GuidelinesAspectRecommendationTarget LagSet based on business requirements, not technical limitsWarehouse SizeRight-size for transformation complexityRefresh ModeUse INCREMENTAL when possible, FULL for complex transformationsDependenciesKeep pipeline depth reasonable (5-7 layers max)MonitoringSet up alerts for refresh failures and lag violations
6.2 Performance Tips
-- 1. Use clustering on large dynamic tables
CREATE OR REPLACE DYNAMIC TABLE analytics_db.transforms.large_fact
 TARGET_LAG = '30 minutes'
 WAREHOUSE = etl_wh
 CLUSTER BY (order_date, region)
AS
SELECT * FROM raw_db.bronze.large_orders;

-- 2. Filter early in the pipeline
CREATE OR REPLACE DYNAMIC TABLE analytics_db.transforms.filtered_orders
 TARGET_LAG = '10 minutes'
 WAREHOUSE = etl_wh
AS
SELECT *
FROM raw_db.bronze.orders
WHERE order_date >= DATEADD('year', -2, CURRENT_DATE()) -- Filter at source
 AND status = 'COMPLETED';

-- 3. Use appropriate data types
-- Avoid VARCHAR for numbers/dates that will be aggregated

Document ControlVersionDateAuthorChanges1.02025-01-29Data Engineering TeamInitial document
This document is maintained by the Data Engineering Team.

