Snowflake Streams and Tasks Guide
Document InformationFieldValueVersion1.0Last Updated2025-01-29ClassificationInternal UseOwnerData Engineering Team
1. Executive Summary
Streams and Tasks are Snowflake's native change data capture (CDC) and scheduling features. Streams track data changes (inserts, updates, deletes), while Tasks provide scheduling and orchestration. Together, they enable powerful incremental processing pipelines.
When to Use Streams vs. Dynamic TablesScenarioStreams + TasksDynamic TablesComplex procedural logic✓Multiple target tables from one source✓Custom error handling✓External actions (notifications, APIs)✓Simple declarative transformations✓Automatic dependency management✓Minimal code maintenance✓
2. Streams Architecture
2.1 How Streams Work
┌───┐
│ STREAMS CHANGE DATA CAPTURE │
├───┤
│ │
│ ┌───┐ │
│ │ SOURCE TABLE: ORDERS │ │
│ │ │ │
│ │ Time T1: Initial State │ │
│ │ ┌─────┬────────────┬────────┬─────────┐ │ │
│ │ │ ID │ Customer │ Amount │ Status │ │ │
│ │ ├─────┼────────────┼────────┼─────────┤ │ │
│ │ │ 1 │ Alice │ 100 │ NEW │ │ │
│ │ │ 2 │ Bob │ 200 │ NEW │ │ │
│ │ └─────┴────────────┴────────┴─────────┘ │ │
│ │ │ │
│ │ Time T2: Changes Made │ │
│ │ • INSERT: ID=3, Charlie, 150, NEW │ │
│ │ • UPDATE: ID=1, Alice, 100, COMPLETED │ │
│ │ • DELETE: ID=2 │ │
│ │ │ │
│ └───┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ STREAM: ORDERS_STREAM │ │
│ │ (Captures changes since last consumption) │ │
│ │ │ │
│ │ ┌─────┬────────────┬────────┬─────────┬────────────────────────┐ │ │
│ │ │ ID │ Customer │ Amount │ Status │ METADATA │ │ │
│ │ ├─────┼────────────┼────────┼─────────┼────────────────────────┤ │ │
│ │ │ 3 │ Charlie │ 150 │ NEW │ METADATA$ACTION=INSERT │ │ │
│ │ │ 1 │ Alice │ 100 │ NEW │ METADATA$ACTION=DELETE │ │ │
│ │ │ 1 │ Alice │ 100 │ COMPLETE│ METADATA$ACTION=INSERT │ │ │
│ │ │ 2 │ Bob │ 200 │ NEW │ METADATA$ACTION=DELETE │ │ │
│ │ └─────┴────────────┴────────┴─────────┴────────────────────────┘ │ │
│ │ │ │
│ │ Metadata Columns: │ │
│ │ • METADATA$ACTION: INSERT or DELETE │ │
│ │ • METADATA$ISUPDATE: TRUE if part of UPDATE │ │
│ │ • METADATA$ROW_ID: Unique row identifier │ │
│ └───┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ CONSUMER: DML or SELECT │ │
│ │ │ │
│ │ When stream is consumed in DML within a transaction: │ │
│ │ • Stream offset advances │ │
│ │ • Previous changes are no longer visible │ │
│ │ • Stream shows only new changes going forward │ │
│ └───┘ │
│ │
└───┘

2.2 Stream TypesTypeDescriptionUse CaseStandardTracks INSERT, UPDATE, DELETEGeneral CDCAppend-onlyTracks only INSERTsImmutable data, logsInsert-onlyTracks only INSERTs on external tablesExternal table CDC
3. Creating and Using Streams
3.1 Basic Stream Operations
-- Create standard stream on a table
CREATE OR REPLACE STREAM raw_db.public.orders_stream
 ON TABLE raw_db.public.orders
 SHOW_INITIAL_ROWS = FALSE -- Don't include existing rows
 COMMENT = 'CDC stream for orders table';

-- Create append-only stream (for log/event tables)
CREATE OR REPLACE STREAM raw_db.public.events_stream
 ON TABLE raw_db.public.events
 APPEND_ONLY = TRUE
 COMMENT = 'Append-only stream for event data';

-- Create stream on a view
CREATE OR REPLACE STREAM raw_db.public.orders_view_stream
 ON VIEW raw_db.public.orders_v;

-- Create stream on external table
CREATE OR REPLACE STREAM raw_db.public.external_stream
 ON EXTERNAL TABLE raw_db.public.external_orders
 INSERT_ONLY = TRUE;

-- Check if stream has data
SELECT SYSTEM$STREAM_HAS_DATA('raw_db.public.orders_stream');

-- View stream contents
SELECT
 *,
 METADATA$ACTION,
 METADATA$ISUPDATE,
 METADATA$ROW_ID
FROM raw_db.public.orders_stream;

3.2 Consuming Streams
-- Consume stream in MERGE (handles all change types)
MERGE INTO staging_db.cleaned.orders AS target
USING (
 SELECT
 order_id,
 customer_id,
 amount,
 order_date,
 METADATA$ACTION AS action,
 METADATA$ISUPDATE AS is_update
 FROM raw_db.public.orders_stream
) AS source
ON target.order_id = source.order_id
WHEN MATCHED AND source.action = 'DELETE' AND source.is_update = FALSE THEN
 DELETE
WHEN MATCHED AND source.action = 'INSERT' AND source.is_update = TRUE THEN
 UPDATE SET
 customer_id = source.customer_id,
 amount = source.amount,
 order_date = source.order_date,
 updated_at = CURRENT_TIMESTAMP()
WHEN NOT MATCHED AND source.action = 'INSERT' THEN
 INSERT (order_id, customer_id, amount, order_date, created_at)
 VALUES (source.order_id, source.customer_id, source.amount, source.order_date, CURRENT_TIMESTAMP());

-- Consume append-only stream with INSERT
INSERT INTO staging_db.raw.events_log
SELECT
 event_id,
 event_type,
 event_data,
 event_timestamp,
 CURRENT_TIMESTAMP() AS loaded_at
FROM raw_db.public.events_stream;

4. Tasks
4.1 Creating Tasks
-- Simple scheduled task
CREATE OR REPLACE TASK staging_db.tasks.refresh_daily_summary
 WAREHOUSE = etl_wh
 SCHEDULE = 'USING CRON 0 6 * * * America/New_York' -- Daily at 6 AM ET
 COMMENT = 'Refresh daily summary table'
AS
 INSERT OVERWRITE INTO analytics_db.reports.daily_summary
 SELECT
 CURRENT_DATE() - 1 AS report_date,
 region,
 SUM(amount) AS total_sales
 FROM analytics_db.facts.orders
 WHERE order_date = CURRENT_DATE() - 1
 GROUP BY region;

-- Task triggered by stream (when stream has data)
CREATE OR REPLACE TASK staging_db.tasks.process_orders_stream
 WAREHOUSE = etl_wh
 SCHEDULE = '1 minute' -- Check every minute
 WHEN SYSTEM$STREAM_HAS_DATA('raw_db.public.orders_stream')
 COMMENT = 'Process new orders from stream'
AS
 CALL staging_db.procedures.process_order_changes();

-- Serverless task (no warehouse needed)
CREATE OR REPLACE TASK staging_db.tasks.lightweight_task
 USER_TASK_MANAGED_INITIAL_WAREHOUSE_SIZE = 'XSMALL'
 SCHEDULE = '5 minutes'
AS
 INSERT INTO analytics_db.metadata.heartbeat (check_time)
 VALUES (CURRENT_TIMESTAMP());

4.2 Task Scheduling Options
-- CRON schedule examples
SCHEDULE = 'USING CRON 0 6 * * * America/New_York' -- Daily at 6 AM
SCHEDULE = 'USING CRON 0 */2 * * * UTC' -- Every 2 hours
SCHEDULE = 'USING CRON 0 0 * * MON America/New_York' -- Weekly Monday midnight
SCHEDULE = 'USING CRON 0 0 1 * * America/New_York' -- Monthly 1st at midnight
SCHEDULE = 'USING CRON */15 * * * * UTC' -- Every 15 minutes

-- Interval schedule
SCHEDULE = '1 minute'
SCHEDULE = '5 minutes'
SCHEDULE = '1 hour'

-- Task with WHEN condition (conditional execution)
CREATE OR REPLACE TASK conditional_task
 WAREHOUSE = etl_wh
 SCHEDULE = '5 minutes'
 WHEN SYSTEM$STREAM_HAS_DATA('my_stream')
 AND CURRENT_TIME() BETWEEN '06:00:00' AND '22:00:00'
AS
 CALL my_procedure();

4.3 Task DAGs (Dependencies)
-- Root task (no predecessor)
CREATE OR REPLACE TASK staging_db.tasks.etl_root
 WAREHOUSE = etl_wh
 SCHEDULE = 'USING CRON 0 2 * * * UTC'
AS
 CALL staging_db.procedures.start_etl_batch();

-- Child task 1 (runs after root)
CREATE OR REPLACE TASK staging_db.tasks.etl_bronze
 WAREHOUSE = etl_wh
 AFTER staging_db.tasks.etl_root
AS
 CALL staging_db.procedures.load_bronze_layer();

-- Child task 2 (runs after root, parallel with task 1)
CREATE OR REPLACE TASK staging_db.tasks.etl_dimensions
 WAREHOUSE = etl_wh
 AFTER staging_db.tasks.etl_root
AS
 CALL staging_db.procedures.refresh_dimensions();

-- Grandchild task (runs after both bronze and dimensions complete)
CREATE OR REPLACE TASK staging_db.tasks.etl_silver
 WAREHOUSE = etl_wh
 AFTER staging_db.tasks.etl_bronze, staging_db.tasks.etl_dimensions
AS
 CALL staging_db.procedures.transform_silver_layer();

-- Final task
CREATE OR REPLACE TASK staging_db.tasks.etl_gold
 WAREHOUSE = etl_wh
 AFTER staging_db.tasks.etl_silver
AS
 CALL staging_db.procedures.aggregate_gold_layer();

-- Enable task tree (must start from root)
ALTER TASK staging_db.tasks.etl_gold RESUME;
ALTER TASK staging_db.tasks.etl_silver RESUME;
ALTER TASK staging_db.tasks.etl_bronze RESUME;
ALTER TASK staging_db.tasks.etl_dimensions RESUME;
ALTER TASK staging_db.tasks.etl_root RESUME;

┌───┐
│ TASK DAG VISUALIZATION │
├───┤
│ │
│ ┌─────────────────┐ │
│ │ etl_root │ │
│ │ (Scheduled) │ │
│ └────────┬────────┘ │
│ │ │
│ ┌─────────────┴─────────────┐ │
│ │ │ │
│ ▼ ▼ │
│ ┌─────────────────┐ ┌─────────────────┐ │
│ │ etl_bronze │ │ etl_dimensions │ │
│ │ (Parallel) │ │ (Parallel) │ │
│ └────────┬────────┘ └────────┬────────┘ │
│ │ │ │
│ └─────────────┬─────────────┘ │
│ │ │
│ ▼ │
│ ┌─────────────────┐ │
│ │ etl_silver │ │
│ │(Waits for both) │ │
│ └────────┬────────┘ │
│ │ │
│ ▼ │
│ ┌─────────────────┐ │
│ │ etl_gold │ │
│ │ (Final) │ │
│ └─────────────────┘ │
│ │
└───┘

5. Stream + Task Patterns
5.1 CDC Pipeline Pattern
-- Step 1: Create source stream
CREATE OR REPLACE STREAM raw_db.public.customers_stream
 ON TABLE raw_db.public.customers;

-- Step 2: Create processing procedure
CREATE OR REPLACE PROCEDURE staging_db.procedures.process_customer_changes()
RETURNS VARCHAR
LANGUAGE SQL
AS
$$
DECLARE
 rows_processed INTEGER;
BEGIN
 -- Process changes using MERGE
 MERGE INTO analytics_db.dimensions.customers AS target
 USING (
 SELECT
 customer_id,
 customer_name,
 email,
 region,
 METADATA$ACTION AS action,
 METADATA$ISUPDATE AS is_update
 FROM raw_db.public.customers_stream
) AS source
 ON target.customer_id = source.customer_id
 WHEN MATCHED AND source.action = 'DELETE' AND NOT source.is_update THEN
 DELETE
 WHEN MATCHED AND source.action = 'INSERT' THEN
 UPDATE SET
 customer_name = source.customer_name,
 email = source.email,
 region = source.region,
 updated_at = CURRENT_TIMESTAMP()
 WHEN NOT MATCHED AND source.action = 'INSERT' THEN
 INSERT (customer_id, customer_name, email, region, created_at, updated_at)
 VALUES (source.customer_id, source.customer_name, source.email, source.region,
 CURRENT_TIMESTAMP(), CURRENT_TIMESTAMP());

 rows_processed := SQLROWCOUNT;

 -- Log the processing
 INSERT INTO analytics_db.metadata.cdc_log (table_name, rows_processed, processed_at)
 VALUES ('customers', :rows_processed, CURRENT_TIMESTAMP());

 RETURN 'Processed ' || :rows_processed || ' customer changes';
END;
$$;

-- Step 3: Create task to run when stream has data
CREATE OR REPLACE TASK staging_db.tasks.process_customers_cdc
 WAREHOUSE = etl_wh
 SCHEDULE = '1 minute'
 WHEN SYSTEM$STREAM_HAS_DATA('raw_db.public.customers_stream')
AS
 CALL staging_db.procedures.process_customer_changes();

-- Step 4: Enable task
ALTER TASK staging_db.tasks.process_customers_cdc RESUME;

5.2 Multi-Table CDC Pattern
-- Create streams on multiple tables
CREATE OR REPLACE STREAM raw_db.public.orders_stream ON TABLE raw_db.public.orders;
CREATE OR REPLACE STREAM raw_db.public.order_items_stream ON TABLE raw_db.public.order_items;
CREATE OR REPLACE STREAM raw_db.public.payments_stream ON TABLE raw_db.public.payments;

-- Combined processing procedure
CREATE OR REPLACE PROCEDURE staging_db.procedures.process_all_order_changes()
RETURNS VARIANT
LANGUAGE SQL
AS
$$
DECLARE
 result VARIANT;
BEGIN
 result := OBJECT_CONSTRUCT();

 -- Process orders if stream has data
 IF (SYSTEM$STREAM_HAS_DATA('raw_db.public.orders_stream')) THEN
 MERGE INTO analytics_db.facts.orders AS t
 USING raw_db.public.orders_stream AS s
 ON t.order_id = s.order_id
 WHEN MATCHED AND METADATA$ACTION = 'DELETE' THEN DELETE
 WHEN MATCHED THEN UPDATE SET t.status = s.status, t.updated_at = CURRENT_TIMESTAMP()
 WHEN NOT MATCHED AND METADATA$ACTION = 'INSERT' THEN INSERT (order_id, customer_id, order_date, status) VALUES (s.order_id, s.customer_id, s.order_date, s.status);
 result := OBJECT_INSERT(result, 'orders_processed', SQLROWCOUNT);
 END IF;

 -- Process order items
 IF (SYSTEM$STREAM_HAS_DATA('raw_db.public.order_items_stream')) THEN
 MERGE INTO analytics_db.facts.order_items AS t
 USING raw_db.public.order_items_stream AS s
 ON t.item_id = s.item_id
 WHEN MATCHED AND METADATA$ACTION = 'DELETE' THEN DELETE
 WHEN MATCHED THEN UPDATE SET t.quantity = s.quantity, t.price = s.price
 WHEN NOT MATCHED AND METADATA$ACTION = 'INSERT' THEN INSERT (item_id, order_id, product_id, quantity, price) VALUES (s.item_id, s.order_id, s.product_id, s.quantity, s.price);
 result := OBJECT_INSERT(result, 'items_processed', SQLROWCOUNT);
 END IF;

 RETURN result;
END;
$$;

-- Task to process all streams
CREATE OR REPLACE TASK staging_db.tasks.process_order_changes
 WAREHOUSE = etl_wh
 SCHEDULE = '1 minute'
 WHEN
 SYSTEM$STREAM_HAS_DATA('raw_db.public.orders_stream')
 OR SYSTEM$STREAM_HAS_DATA('raw_db.public.order_items_stream')
 OR SYSTEM$STREAM_HAS_DATA('raw_db.public.payments_stream')
AS
 CALL staging_db.procedures.process_all_order_changes();

6. Monitoring and Management
6.1 Task Monitoring
-- View task history
SELECT *
FROM TABLE(INFORMATION_SCHEMA.TASK_HISTORY(
 SCHEDULED_TIME_RANGE_START => DATEADD('day', -1, CURRENT_TIMESTAMP()),
 TASK_NAME => 'process_customers_cdc'
))
ORDER BY SCHEDULED_TIME DESC;

-- View all task runs
SELECT
 NAME,
 STATE,
 SCHEDULED_TIME,
 COMPLETED_TIME,
 ERROR_MESSAGE,
 RETURN_VALUE
FROM TABLE(INFORMATION_SCHEMA.TASK_HISTORY())
WHERE SCHEDULED_TIME >= DATEADD('hour', -24, CURRENT_TIMESTAMP())
ORDER BY SCHEDULED_TIME DESC;

-- View current task state
SHOW TASKS IN SCHEMA staging_db.tasks;

-- Check task dependencies
SELECT *
FROM TABLE(INFORMATION_SCHEMA.TASK_DEPENDENTS(
 TASK_NAME => 'staging_db.tasks.etl_root',
 RECURSIVE => TRUE
));

6.2 Stream Monitoring
-- View stream metadata
SHOW STREAMS IN SCHEMA raw_db.public;

-- Check stream staleness
SELECT
 NAME,
 STALE,
 STALE_AFTER,
 OWNER
FROM TABLE(INFORMATION_SCHEMA.STREAMS())
WHERE DATABASE_NAME = 'RAW_DB';

-- Monitor stream data volume
SELECT
 COUNT(*) AS pending_changes,
 COUNT_IF(METADATA$ACTION = 'INSERT' AND NOT METADATA$ISUPDATE) AS inserts,
 COUNT_IF(METADATA$ACTION = 'DELETE' AND NOT METADATA$ISUPDATE) AS deletes,
 COUNT_IF(METADATA$ISUPDATE) AS updates
FROM raw_db.public.orders_stream;

7. Best Practices
7.1 Stream Best PracticesPracticeRecommendationConsumption FrequencyConsume streams regularly to avoid stalenessTransaction ScopeAlways consume streams within transactionsStream TypeUse APPEND_ONLY for log tablesMonitoringCheck STALE status regularly
7.2 Task Best PracticesPracticeRecommendationError HandlingUse TRY/CATCH in proceduresIdempotencyDesign tasks to be safely re-runnableTimeoutsSet appropriate USER_TASK_TIMEOUT_MSDependenciesUse DAGs for complex workflows
Document ControlVersionDateAuthorChanges1.02025-01-29Data Engineering TeamInitial document
This document is maintained by the Data Engineering Team.

