Snowflake Task Orchestration Guide
Document InformationFieldValueVersion1.0Last Updated2025-01-29ClassificationInternal UseOwnerData Engineering Team
1. Executive Summary
Snowflake Tasks enable scheduling and orchestration of SQL statements and stored procedures. This guide covers task creation, DAG (Directed Acyclic Graph) orchestration, serverless tasks, error handling, and monitoring for building robust data pipelines.
2. Task Architecture
┌───┐
│ SNOWFLAKE TASK ORCHESTRATION │
├───┤
│ │
│ TASK DAG (Directed Acyclic Graph) │
│ │
│ ┌───┐ │
│ │ │ │
│ │ ┌───────────────────┐ │ │
│ │ │ ROOT TASK │ │ │
│ │ │ (Scheduled) │ │ │
│ │ │ │ │ │
│ │ │ CRON: 0 * * * * │ │ │
│ │ │ (Every hour) │ │ │
│ │ └─────────┬─────────┘ │ │
│ │ │ │ │
│ │ ┌───────────────┼───────────────┐ │ │
│ │ │ │ │ │ │
│ │ ▼ ▼ ▼ │ │
│ │ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │ │
│ │ │ CHILD TASK 1 │ │ CHILD TASK 2 │ │ CHILD TASK 3 │ │ │
│ │ │ (Extract) │ │ (Extract) │ │ (Extract) │ │ │
│ │ │ │ │ │ │ │ │ │
│ │ │ AFTER: root │ │ AFTER: root │ │ AFTER: root │ │ │
│ │ └────────┬────────┘ └────────┬────────┘ └────────┬────────┘ │ │
│ │ │ │ │ │ │
│ │ └───────────────────┼───────────────────┘ │ │
│ │ │ │ │
│ │ ▼ │ │
│ │ ┌───────────────────┐ │ │
│ │ │ MERGE TASK │ │ │
│ │ │ (Transform) │ │ │
│ │ │ │ │ │
│ │ │ AFTER: task1, │ │ │
│ │ │ task2, │ │ │
│ │ │ task3 │ │ │
│ │ └─────────┬─────────┘ │ │
│ │ │ │ │
│ │ ▼ │ │
│ │ ┌───────────────────┐ │ │
│ │ │ FINAL TASK │ │ │
│ │ │ (Load) │ │ │
│ │ └───────────────────┘ │ │
│ │ │ │
│ └───┘ │
│ │
│ EXECUTION OPTIONS: │
│ • User-managed warehouse: You pay for warehouse usage │
│ • Serverless tasks: Snowflake manages compute, pay per execution │
│ │
└───┘

3. Creating Tasks
3.1 Basic Task Creation
-- Simple scheduled task with warehouse
CREATE OR REPLACE TASK daily_sales_summary
 WAREHOUSE = etl_wh
 SCHEDULE = 'USING CRON 0 6 * * * America/New_York' -- 6 AM daily
AS
INSERT INTO analytics.daily_sales_summary
SELECT
 CURRENT_DATE() - 1 AS sale_date,
 region,
 SUM(amount) AS total_sales,
 COUNT(*) AS order_count
FROM raw.orders
WHERE order_date = CURRENT_DATE() - 1
GROUP BY region;

-- Task with minute interval
CREATE OR REPLACE TASK frequent_refresh
 WAREHOUSE = etl_wh
 SCHEDULE = '5 MINUTE' -- Every 5 minutes
AS
CALL refresh_cache_procedure();

-- Serverless task (no warehouse needed)
CREATE OR REPLACE TASK serverless_aggregation
 SCHEDULE = 'USING CRON */15 * * * * UTC' -- Every 15 minutes
 USER_TASK_MANAGED_INITIAL_WAREHOUSE_SIZE = 'XSMALL'
AS
MERGE INTO target_table t
USING source_table s ON t.id = s.id
WHEN MATCHED THEN UPDATE SET t.value = s.value
WHEN NOT MATCHED THEN INSERT VALUES (s.id, s.value);

3.2 Task with WHEN Condition
-- Task that only runs when there's new data
CREATE OR REPLACE TASK conditional_etl
 WAREHOUSE = etl_wh
 SCHEDULE = '10 MINUTE'
 WHEN SYSTEM$STREAM_HAS_DATA('orders_stream')
AS
INSERT INTO processed_orders
SELECT
 order_id,
 customer_id,
 amount,
 CURRENT_TIMESTAMP() AS processed_at
FROM orders_stream;

-- Task with custom condition
CREATE OR REPLACE TASK business_hours_task
 WAREHOUSE = etl_wh
 SCHEDULE = '30 MINUTE'
 WHEN HOUR(CURRENT_TIMESTAMP()) BETWEEN 8 AND 18
 AND DAYOFWEEK(CURRENT_DATE()) BETWEEN 1 AND 5
AS
CALL process_realtime_data();

3.3 Task Calling Stored Procedures
-- Create stored procedure
CREATE OR REPLACE PROCEDURE etl_pipeline(
 source_schema VARCHAR,
 target_schema VARCHAR,
 process_date DATE
)
RETURNS VARCHAR
LANGUAGE SQL
AS
$$
DECLARE
 rows_processed INTEGER;
BEGIN
 -- Extract
 CREATE OR REPLACE TEMP TABLE staging_data AS
 SELECT * FROM IDENTIFIER(:source_schema || '.raw_data')
 WHERE data_date = :process_date;

 -- Transform and Load
 INSERT INTO IDENTIFIER(:target_schema || '.processed_data')
 SELECT
 id,
 UPPER(name) AS name,
 amount * 1.1 AS adjusted_amount,
 :process_date AS process_date,
 CURRENT_TIMESTAMP() AS loaded_at
 FROM staging_data;

 SELECT COUNT(*) INTO rows_processed FROM staging_data;

 RETURN 'Processed ' || rows_processed || ' rows';
END;
$$;

-- Task calling the procedure
CREATE OR REPLACE TASK run_etl_pipeline
 WAREHOUSE = etl_wh
 SCHEDULE = 'USING CRON 0 2 * * * UTC' -- 2 AM UTC daily
AS
CALL etl_pipeline('raw', 'analytics', CURRENT_DATE() - 1);

4. Task DAGs (Orchestration)
4.1 Creating Task Dependencies
-- Root task (only root tasks have schedules)
CREATE OR REPLACE TASK etl_root
 WAREHOUSE = etl_wh
 SCHEDULE = 'USING CRON 0 1 * * * UTC'
AS
SELECT 1; -- Placeholder, actual work in child tasks

-- Child task 1: Extract customers
CREATE OR REPLACE TASK extract_customers
 WAREHOUSE = etl_wh
 AFTER etl_root
AS
INSERT INTO staging.customers
SELECT * FROM source.customers
WHERE updated_at >= DATEADD('day', -1, CURRENT_TIMESTAMP());

-- Child task 2: Extract orders (parallel with task 1)
CREATE OR REPLACE TASK extract_orders
 WAREHOUSE = etl_wh
 AFTER etl_root
AS
INSERT INTO staging.orders
SELECT * FROM source.orders
WHERE order_date >= CURRENT_DATE() - 1;

-- Child task 3: Extract products (parallel with task 1 & 2)
CREATE OR REPLACE TASK extract_products
 WAREHOUSE = etl_wh
 AFTER etl_root
AS
INSERT INTO staging.products
SELECT * FROM source.products
WHERE updated_at >= DATEADD('day', -1, CURRENT_TIMESTAMP());

-- Transform task (waits for all extracts)
CREATE OR REPLACE TASK transform_data
 WAREHOUSE = etl_wh
 AFTER extract_customers, extract_orders, extract_products
AS
CALL run_transformations();

-- Final load task
CREATE OR REPLACE TASK load_to_analytics
 WAREHOUSE = etl_wh
 AFTER transform_data
AS
CALL load_analytics_tables();

4.2 Complex DAG Pattern
-- Multi-branch DAG with conditional execution
-- Root
CREATE OR REPLACE TASK pipeline_root
 WAREHOUSE = etl_wh
 SCHEDULE = '1 HOUR'
AS
INSERT INTO pipeline.execution_log VALUES (CURRENT_TIMESTAMP(), 'STARTED');

-- Branch A: Customer analytics
CREATE OR REPLACE TASK customer_extract
 WAREHOUSE = etl_wh
 AFTER pipeline_root
 WHEN SYSTEM$STREAM_HAS_DATA('customer_changes_stream')
AS
INSERT INTO staging.customer_changes SELECT * FROM customer_changes_stream;

CREATE OR REPLACE TASK customer_transform
 WAREHOUSE = etl_wh
 AFTER customer_extract
AS
MERGE INTO analytics.customers t
USING staging.customer_changes s ON t.customer_id = s.customer_id
WHEN MATCHED THEN UPDATE SET t.name = s.name, t.updated_at = CURRENT_TIMESTAMP()
WHEN NOT MATCHED THEN INSERT VALUES (s.customer_id, s.name, CURRENT_TIMESTAMP());

-- Branch B: Order analytics
CREATE OR REPLACE TASK order_extract
 WAREHOUSE = etl_wh
 AFTER pipeline_root
 WHEN SYSTEM$STREAM_HAS_DATA('order_changes_stream')
AS
INSERT INTO staging.order_changes SELECT * FROM order_changes_stream;

CREATE OR REPLACE TASK order_transform
 WAREHOUSE = etl_wh
 AFTER order_extract
AS
MERGE INTO analytics.orders t
USING staging.order_changes s ON t.order_id = s.order_id
WHEN MATCHED THEN UPDATE SET t.amount = s.amount
WHEN NOT MATCHED THEN INSERT VALUES (s.order_id, s.customer_id, s.amount, s.order_date);

-- Join point: Aggregate after both branches complete
CREATE OR REPLACE TASK aggregate_metrics
 WAREHOUSE = etl_wh
 AFTER customer_transform, order_transform
AS
INSERT INTO analytics.daily_metrics
SELECT
 CURRENT_DATE() AS metric_date,
 COUNT(DISTINCT c.customer_id) AS active_customers,
 SUM(o.amount) AS total_revenue
FROM analytics.customers c
JOIN analytics.orders o ON c.customer_id = o.customer_id
WHERE o.order_date = CURRENT_DATE();

4.3 Managing Task DAGs
-- Resume entire DAG (start with root)
ALTER TASK etl_root RESUME;

-- Suspend entire DAG (must suspend children first)
ALTER TASK load_to_analytics SUSPEND;
ALTER TASK transform_data SUSPEND;
ALTER TASK extract_customers SUSPEND;
ALTER TASK extract_orders SUSPEND;
ALTER TASK extract_products SUSPEND;
ALTER TASK etl_root SUSPEND;

-- View task dependencies
SHOW TASKS;

-- Get DAG visualization
SELECT *
FROM TABLE(INFORMATION_SCHEMA.TASK_DEPENDENTS(
 TASK_NAME => 'etl_root',
 RECURSIVE => TRUE
));

-- Execute DAG immediately (manual trigger)
EXECUTE TASK etl_root;

5. Serverless Tasks
5.1 Creating Serverless Tasks
-- Serverless task with auto-scaling
CREATE OR REPLACE TASK serverless_etl
 SCHEDULE = '5 MINUTE'
 USER_TASK_MANAGED_INITIAL_WAREHOUSE_SIZE = 'SMALL'
 USER_TASK_TIMEOUT_MS = 3600000 -- 1 hour timeout
AS
CALL incremental_data_sync();

-- Serverless task with minimum size
CREATE OR REPLACE TASK serverless_light
 SCHEDULE = '1 MINUTE'
 USER_TASK_MANAGED_INITIAL_WAREHOUSE_SIZE = 'XSMALL'
AS
INSERT INTO metrics.heartbeat VALUES (CURRENT_TIMESTAMP());

5.2 Serverless Cost Management
-- Monitor serverless task costs
SELECT
 name,
 ROUND(SUM(credits_used), 4) AS total_credits,
 COUNT(*) AS execution_count,
 AVG(TIMESTAMPDIFF('second', query_start_time, completed_time)) AS avg_duration_sec
FROM SNOWFLAKE.ACCOUNT_USAGE.SERVERLESS_TASK_HISTORY
WHERE start_time >= DATEADD('day', -7, CURRENT_DATE())
GROUP BY name
ORDER BY total_credits DESC;

-- Set up resource monitor for serverless compute
CREATE RESOURCE MONITOR serverless_monitor
 WITH CREDIT_QUOTA = 100
 TRIGGERS
 ON 75 PERCENT DO NOTIFY
 ON 100 PERCENT DO SUSPEND;

6. Error Handling
6.1 Task Error Handling with Procedures
-- Stored procedure with error handling
CREATE OR REPLACE PROCEDURE robust_etl_task()
RETURNS VARCHAR
LANGUAGE SQL
AS
$$
DECLARE
 error_message VARCHAR;
 rows_affected INTEGER;
BEGIN
 -- Start transaction
 BEGIN TRANSACTION;

 -- Main ETL logic
 INSERT INTO target_table
 SELECT * FROM source_table
 WHERE process_flag = FALSE;

 rows_affected := SQLROWCOUNT;

 -- Update source
 UPDATE source_table SET process_flag = TRUE
 WHERE process_flag = FALSE;

 COMMIT;

 -- Log success
 INSERT INTO etl_log (task_name, status, message, rows_processed, completed_at)
 VALUES ('robust_etl_task', 'SUCCESS', 'Completed successfully', :rows_affected, CURRENT_TIMESTAMP());

 RETURN 'SUCCESS: ' || rows_affected || ' rows processed';

EXCEPTION
 WHEN OTHER THEN
 ROLLBACK;
 error_message := SQLERRM;

 -- Log error
 INSERT INTO etl_log (task_name, status, message, completed_at)
 VALUES ('robust_etl_task', 'ERROR', :error_message, CURRENT_TIMESTAMP());

 -- Re-raise or return error
 RETURN 'ERROR: ' || error_message;
END;
$$;

-- Task using error-handling procedure
CREATE OR REPLACE TASK robust_etl
 WAREHOUSE = etl_wh
 SCHEDULE = '15 MINUTE'
AS
CALL robust_etl_task();

6.2 Monitoring Failed Tasks
-- View task execution history
SELECT
 name,
 database_name,
 schema_name,
 state,
 scheduled_time,
 completed_time,
 error_code,
 error_message
FROM TABLE(INFORMATION_SCHEMA.TASK_HISTORY(
 SCHEDULED_TIME_RANGE_START => DATEADD('day', -1, CURRENT_TIMESTAMP()),
 RESULT_LIMIT => 100
))
ORDER BY scheduled_time DESC;

-- Find failed tasks
SELECT
 name,
 scheduled_time,
 error_code,
 error_message
FROM TABLE(INFORMATION_SCHEMA.TASK_HISTORY())
WHERE state = 'FAILED'
 AND scheduled_time >= DATEADD('day', -7, CURRENT_TIMESTAMP())
ORDER BY scheduled_time DESC;

-- Task failure rate
SELECT
 name,
 COUNT(*) AS total_runs,
 SUM(CASE WHEN state = 'SUCCEEDED' THEN 1 ELSE 0 END) AS success_count,
 SUM(CASE WHEN state = 'FAILED' THEN 1 ELSE 0 END) AS failure_count,
 ROUND(SUM(CASE WHEN state = 'FAILED' THEN 1 ELSE 0 END) * 100.0 / COUNT(*), 2) AS failure_rate
FROM TABLE(INFORMATION_SCHEMA.TASK_HISTORY(
 SCHEDULED_TIME_RANGE_START => DATEADD('day', -30, CURRENT_TIMESTAMP())
))
GROUP BY name
HAVING failure_count > 0
ORDER BY failure_rate DESC;

7. Task Monitoring
7.1 Comprehensive Task Monitoring
-- Task execution dashboard
CREATE OR REPLACE VIEW task_monitoring.execution_dashboard AS
SELECT
 name AS task_name,
 database_name,
 schema_name,
 state,
 scheduled_time,
 completed_time,
 TIMESTAMPDIFF('second', scheduled_time, completed_time) AS duration_seconds,
 CASE
 WHEN state = 'SUCCEEDED' THEN 'OK'
 WHEN state = 'FAILED' THEN 'ALERT'
 WHEN state = 'SKIPPED' THEN 'WARN'
 ELSE 'UNKNOWN'
 END AS status_indicator,
 error_message
FROM TABLE(INFORMATION_SCHEMA.TASK_HISTORY(
 SCHEDULED_TIME_RANGE_START => DATEADD('day', -7, CURRENT_TIMESTAMP())
))
ORDER BY scheduled_time DESC;

-- Task performance trends
SELECT
 name,
 DATE_TRUNC('hour', scheduled_time) AS hour,
 COUNT(*) AS executions,
 AVG(TIMESTAMPDIFF('second', scheduled_time, completed_time)) AS avg_duration,
 MAX(TIMESTAMPDIFF('second', scheduled_time, completed_time)) AS max_duration
FROM TABLE(INFORMATION_SCHEMA.TASK_HISTORY(
 SCHEDULED_TIME_RANGE_START => DATEADD('day', -7, CURRENT_TIMESTAMP())
))
WHERE state = 'SUCCEEDED'
GROUP BY name, DATE_TRUNC('hour', scheduled_time)
ORDER BY hour DESC, name;

7.2 Alerting on Task Failures
-- Create alert for task failures
CREATE OR REPLACE ALERT task_failure_alert
 WAREHOUSE = alert_wh
 SCHEDULE = '5 MINUTE'
 IF (EXISTS (
 SELECT 1
 FROM TABLE(INFORMATION_SCHEMA.TASK_HISTORY(
 SCHEDULED_TIME_RANGE_START => DATEADD('minute', -10, CURRENT_TIMESTAMP())
))
 WHERE state = 'FAILED'
))
 THEN
 CALL send_alert_notification('Task failure detected');

-- Enable alert
ALTER ALERT task_failure_alert RESUME;

-- View alert history
SELECT *
FROM TABLE(INFORMATION_SCHEMA.ALERT_HISTORY(
 SCHEDULED_TIME_RANGE_START => DATEADD('day', -1, CURRENT_TIMESTAMP())
))
ORDER BY scheduled_time DESC;

8. Best Practices
8.1 Task Design GuidelinesPracticeDescriptionUse DAGsOrganize related tasks in dependency chainsIdempotent tasksTasks should be safe to re-runError handlingAlways include error handling in proceduresAppropriate schedulingDon't over-schedule; use WHEN conditionsServerless for variable loadsUse serverless for unpredictable workloadsMonitor activelySet up alerts for failures
8.2 Task Optimization
-- 1. Use WHEN clause to avoid unnecessary runs
CREATE OR REPLACE TASK optimized_task
 WAREHOUSE = etl_wh
 SCHEDULE = '5 MINUTE'
 WHEN SYSTEM$STREAM_HAS_DATA('my_stream')
AS
-- Only runs when stream has data

-- 2. Right-size warehouse for task workload
-- Small tasks: XSMALL warehouse
-- Large ETL: MEDIUM or LARGE warehouse

-- 3. Use appropriate task timeout
CREATE OR REPLACE TASK long_running_task
 WAREHOUSE = etl_wh
 SCHEDULE = '1 DAY'
 USER_TASK_TIMEOUT_MS = 7200000 -- 2 hours
AS
CALL complex_etl_procedure();

-- 4. Batch operations in tasks
CREATE OR REPLACE TASK batched_processing
 WAREHOUSE = etl_wh
 SCHEDULE = '1 HOUR'
AS
CALL process_batch(1000); -- Process 1000 records at a time

Document ControlVersionDateAuthorChanges1.02025-01-29Data Engineering TeamInitial document
This document is maintained by the Data Engineering Team.

