Snowflake Data Modeling Guide
Document InformationFieldValueVersion1.0Last Updated2025-01-29ClassificationInternal UseOwnerData Architecture Team
1. Executive Summary
Effective data modeling in Snowflake requires understanding its unique architecture including micro-partitions, clustering, and separation of storage and compute. This guide covers dimensional modeling patterns, schema design, and optimization strategies for analytical workloads.
2. Snowflake Data Modeling Architecture
┌───┐
│ DATA WAREHOUSE ARCHITECTURE │
├───┤
│ │
│ MEDALLION ARCHITECTURE │
│ │
│ ┌───┐ │
│ │ BRONZE LAYER (Raw Data) │ │
│ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │ │
│ │ │ raw_orders │ │raw_customers│ │raw_products │ │ raw_events │ │ │
│ │ │ │ │ │ │ │ │ │ │ │
│ │ │ • As-is data│ │ • As-is data│ │ • As-is data│ │ • As-is data│ │ │
│ │ │ • Append-only│ │• Append-only│ │• Append-only│ │• Append-only│ │ │
│ │ └─────────────┘ └─────────────┘ └─────────────┘ └─────────────┘ │ │
│ └───┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ SILVER LAYER (Cleansed & Conformed) │ │
│ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │ │
│ │ │ stg_orders │ │stg_customers│ │stg_products │ │ stg_events │ │ │
│ │ │ │ │ │ │ │ │ │ │ │
│ │ │ • Validated │ │ • Validated │ │ • Validated │ │ • Validated │ │ │
│ │ │ • Typed │ │ • Typed │ │ • Typed │ │ • Typed │ │ │
│ │ │ • Deduped │ │ • Deduped │ │ • Deduped │ │ • Deduped │ │ │
│ │ └─────────────┘ └─────────────┘ └─────────────┘ └─────────────┘ │ │
│ └───┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ GOLD LAYER (Business-Ready) │ │
│ │ │ │
│ │ STAR SCHEMA │ │
│ │ ┌─────────────┐ │ │
│ │ │ dim_date │ │ │
│ │ └──────┬──────┘ │ │
│ │ │ │ │
│ │ ┌─────────────┐ │ ┌─────────────┐ │ │
│ │ │dim_customer │─┼─│ dim_product │ │ │
│ │ └──────┬──────┘ │ └──────┬──────┘ │ │
│ │ │ │ │ │ │
│ │ └────────┼────────┘ │ │
│ │ │ │ │
│ │ ┌──────▼──────┐ │ │
│ │ │ fact_sales │ │ │
│ │ └─────────────┘ │ │
│ └───┘ │
│ │
└───┘

3. Dimensional Modeling
3.1 Dimension Tables
-- Date dimension (Type 0 - static)
CREATE OR REPLACE TABLE dims.dim_date (
 date_key NUMBER(8,0) PRIMARY KEY,
 full_date DATE NOT NULL,
 year NUMBER(4,0),
 quarter NUMBER(1,0),
 month NUMBER(2,0),
 month_name VARCHAR(20),
 week_of_year NUMBER(2,0),
 day_of_month NUMBER(2,0),
 day_of_week NUMBER(1,0),
 day_name VARCHAR(20),
 is_weekend BOOLEAN,
 is_holiday BOOLEAN,
 holiday_name VARCHAR(100),
 fiscal_year NUMBER(4,0),
 fiscal_quarter NUMBER(1,0),
 fiscal_month NUMBER(2,0)
);

-- Populate date dimension
INSERT INTO dims.dim_date
WITH date_spine AS (
 SELECT DATEADD('day', SEQ4(), '2020-01-01'::DATE) AS full_date
 FROM TABLE(GENERATOR(ROWCOUNT => 3650)) -- 10 years
)
SELECT
 TO_NUMBER(TO_CHAR(full_date, 'YYYYMMDD')) AS date_key,
 full_date,
 YEAR(full_date) AS year,
 QUARTER(full_date) AS quarter,
 MONTH(full_date) AS month,
 MONTHNAME(full_date) AS month_name,
 WEEKOFYEAR(full_date) AS week_of_year,
 DAYOFMONTH(full_date) AS day_of_month,
 DAYOFWEEK(full_date) AS day_of_week,
 DAYNAME(full_date) AS day_name,
 DAYOFWEEK(full_date) IN (0, 6) AS is_weekend,
 FALSE AS is_holiday, -- Update with holiday logic
 NULL AS holiday_name,
 CASE WHEN MONTH(full_date) >= 7 THEN YEAR(full_date) + 1 ELSE YEAR(full_date) END AS fiscal_year,
 CASE WHEN MONTH(full_date) >= 7 THEN QUARTER(full_date) - 2 ELSE QUARTER(full_date) + 2 END AS fiscal_quarter,
 CASE WHEN MONTH(full_date) >= 7 THEN MONTH(full_date) - 6 ELSE MONTH(full_date) + 6 END AS fiscal_month
FROM date_spine;

-- Customer dimension (Type 2 - slowly changing)
CREATE OR REPLACE TABLE dims.dim_customer (
 customer_sk NUMBER AUTOINCREMENT PRIMARY KEY, -- Surrogate key
 customer_id VARCHAR(50) NOT NULL, -- Natural key
 customer_name VARCHAR(200),
 email VARCHAR(200),
 phone VARCHAR(50),
 address VARCHAR(500),
 city VARCHAR(100),
 state VARCHAR(50),
 country VARCHAR(100),
 postal_code VARCHAR(20),
 customer_segment VARCHAR(50),
 region VARCHAR(50),
 row_hash VARCHAR(64),
 effective_date DATE NOT NULL,
 expiry_date DATE NOT NULL DEFAULT '9999-12-31',
 is_current BOOLEAN NOT NULL DEFAULT TRUE
);

-- Product dimension (Type 1 - overwrite)
CREATE OR REPLACE TABLE dims.dim_product (
 product_sk NUMBER AUTOINCREMENT PRIMARY KEY,
 product_id VARCHAR(50) NOT NULL UNIQUE,
 product_name VARCHAR(200),
 product_description VARCHAR(2000),
 category VARCHAR(100),
 subcategory VARCHAR(100),
 brand VARCHAR(100),
 unit_cost NUMBER(18,2),
 unit_price NUMBER(18,2),
 is_active BOOLEAN DEFAULT TRUE,
 created_date DATE,
 updated_date DATE
);

3.2 Fact Tables
-- Transaction fact table (grain: one row per order line item)
CREATE OR REPLACE TABLE facts.fact_sales (
 -- Keys
 sales_sk NUMBER AUTOINCREMENT PRIMARY KEY,
 order_id VARCHAR(50) NOT NULL,
 order_line_number NUMBER(5,0),
 date_key NUMBER(8,0) NOT NULL,
 customer_sk NUMBER NOT NULL,
 product_sk NUMBER NOT NULL,

 -- Degenerate dimensions
 order_number VARCHAR(50),
 channel VARCHAR(50),

 -- Measures
 quantity NUMBER(10,0),
 unit_price NUMBER(18,2),
 unit_cost NUMBER(18,2),
 discount_amount NUMBER(18,2),
 gross_amount NUMBER(18,2),
 net_amount NUMBER(18,2),
 profit_amount NUMBER(18,2),

 -- Audit
 source_system VARCHAR(50),
 load_timestamp TIMESTAMP_NTZ DEFAULT CURRENT_TIMESTAMP(),

 -- Foreign key constraints (logical - Snowflake doesn't enforce)
 CONSTRAINT fk_date FOREIGN KEY (date_key) REFERENCES dims.dim_date(date_key),
 CONSTRAINT fk_customer FOREIGN KEY (customer_sk) REFERENCES dims.dim_customer(customer_sk),
 CONSTRAINT fk_product FOREIGN KEY (product_sk) REFERENCES dims.dim_product(product_sk)
);

-- Snapshot fact table (periodic snapshot)
CREATE OR REPLACE TABLE facts.fact_inventory_snapshot (
 snapshot_date_key NUMBER(8,0),
 product_sk NUMBER,
 warehouse_sk NUMBER,

 -- Measures at point in time
 quantity_on_hand NUMBER(10,0),
 quantity_reserved NUMBER(10,0),
 quantity_available NUMBER(10,0),
 inventory_value NUMBER(18,2),
 days_of_supply NUMBER(5,0),

 PRIMARY KEY (snapshot_date_key, product_sk, warehouse_sk)
);

-- Accumulating snapshot fact table (order lifecycle)
CREATE OR REPLACE TABLE facts.fact_order_fulfillment (
 order_sk NUMBER AUTOINCREMENT PRIMARY KEY,
 order_id VARCHAR(50) NOT NULL,
 customer_sk NUMBER,
 product_sk NUMBER,

 -- Milestone date keys
 order_date_key NUMBER(8,0),
 payment_date_key NUMBER(8,0),
 ship_date_key NUMBER(8,0),
 delivery_date_key NUMBER(8,0),

 -- Lag measures (in days)
 order_to_payment_days NUMBER(5,0),
 payment_to_ship_days NUMBER(5,0),
 ship_to_delivery_days NUMBER(5,0),
 order_to_delivery_days NUMBER(5,0),

 -- Measures
 order_amount NUMBER(18,2),
 quantity NUMBER(10,0),

 -- Status
 current_status VARCHAR(50)
);

3.3 Bridge Tables
-- Bridge table for many-to-many (customer to promotion)
CREATE OR REPLACE TABLE dims.bridge_customer_promotion (
 customer_sk NUMBER,
 promotion_sk NUMBER,
 weighting_factor NUMBER(5,4) DEFAULT 1.0,
 PRIMARY KEY (customer_sk, promotion_sk)
);

-- Bridge table for multi-valued dimension (product tags)
CREATE OR REPLACE TABLE dims.bridge_product_tags (
 product_sk NUMBER,
 tag_sk NUMBER,
 PRIMARY KEY (product_sk, tag_sk)
);

4. SCD (Slowly Changing Dimension) Patterns
4.1 Type 1 SCD (Overwrite)
-- Type 1: Simply overwrite the record
MERGE INTO dims.dim_product AS target
USING staging.stg_products AS source
ON target.product_id = source.product_id
WHEN MATCHED THEN
 UPDATE SET
 target.product_name = source.product_name,
 target.category = source.category,
 target.subcategory = source.subcategory,
 target.unit_price = source.unit_price,
 target.updated_date = CURRENT_DATE()
WHEN NOT MATCHED THEN
 INSERT (product_id, product_name, category, subcategory, unit_cost, unit_price, is_active, created_date, updated_date)
 VALUES (source.product_id, source.product_name, source.category, source.subcategory,
 source.unit_cost, source.unit_price, TRUE, CURRENT_DATE(), CURRENT_DATE());

4.2 Type 2 SCD (Historical Tracking)
-- Type 2: Maintain history with surrogate keys
-- Step 1: Expire changed records
UPDATE dims.dim_customer target
SET
 is_current = FALSE,
 expiry_date = CURRENT_DATE() - 1
FROM staging.stg_customers source
WHERE target.customer_id = source.customer_id
 AND target.is_current = TRUE
 AND target.row_hash != MD5(
 COALESCE(source.customer_name, '') ||
 COALESCE(source.email, '') ||
 COALESCE(source.address, '') ||
 COALESCE(source.customer_segment, '')
);

-- Step 2: Insert new versions
INSERT INTO dims.dim_customer (
 customer_id, customer_name, email, phone, address, city, state, country,
 postal_code, customer_segment, region, row_hash, effective_date, expiry_date, is_current
)
SELECT
 source.customer_id,
 source.customer_name,
 source.email,
 source.phone,
 source.address,
 source.city,
 source.state,
 source.country,
 source.postal_code,
 source.customer_segment,
 source.region,
 MD5(COALESCE(source.customer_name, '') ||
 COALESCE(source.email, '') ||
 COALESCE(source.address, '') ||
 COALESCE(source.customer_segment, '')),
 CURRENT_DATE(),
 '9999-12-31',
 TRUE
FROM staging.stg_customers source
LEFT JOIN dims.dim_customer target
 ON source.customer_id = target.customer_id
 AND target.is_current = TRUE
WHERE target.customer_id IS NULL -- New customer
 OR target.row_hash != MD5(
 COALESCE(source.customer_name, '') ||
 COALESCE(source.email, '') ||
 COALESCE(source.address, '') ||
 COALESCE(source.customer_segment, '')
); -- Changed customer

-- Using MERGE for Type 2 (Snowflake pattern)
MERGE INTO dims.dim_customer_history AS target
USING (
 SELECT
 customer_id,
 customer_name,
 email,
 customer_segment,
 MD5(customer_name || email || customer_segment) AS row_hash
 FROM staging.stg_customers
) AS source
ON target.customer_id = source.customer_id AND target.is_current = TRUE
WHEN MATCHED AND target.row_hash != source.row_hash THEN
 UPDATE SET
 is_current = FALSE,
 expiry_date = CURRENT_DATE() - 1
WHEN NOT MATCHED THEN
 INSERT (customer_id, customer_name, email, customer_segment, row_hash, effective_date, is_current)
 VALUES (source.customer_id, source.customer_name, source.email, source.customer_segment,
 source.row_hash, CURRENT_DATE(), TRUE);

4.3 Type 3 SCD (Previous Value)
-- Type 3: Store previous value in separate column
CREATE OR REPLACE TABLE dims.dim_customer_type3 (
 customer_sk NUMBER AUTOINCREMENT PRIMARY KEY,
 customer_id VARCHAR(50) NOT NULL,
 customer_name VARCHAR(200),
 current_segment VARCHAR(50),
 previous_segment VARCHAR(50),
 segment_change_date DATE,
 current_region VARCHAR(50),
 previous_region VARCHAR(50),
 region_change_date DATE
);

-- Update with Type 3 pattern
MERGE INTO dims.dim_customer_type3 AS target
USING staging.stg_customers AS source
ON target.customer_id = source.customer_id
WHEN MATCHED AND target.current_segment != source.customer_segment THEN
 UPDATE SET
 previous_segment = target.current_segment,
 current_segment = source.customer_segment,
 segment_change_date = CURRENT_DATE()
WHEN NOT MATCHED THEN
 INSERT (customer_id, customer_name, current_segment)
 VALUES (source.customer_id, source.customer_name, source.customer_segment);

5. Schema Design Patterns
5.1 Star Schema
-- Star schema: Central fact with dimension tables
-- Advantages: Simple queries, best for BI tools

-- Fact table at center
SELECT
 d.full_date,
 c.customer_name,
 c.region,
 p.product_name,
 p.category,
 SUM(f.net_amount) AS total_sales,
 SUM(f.profit_amount) AS total_profit
FROM facts.fact_sales f
JOIN dims.dim_date d ON f.date_key = d.date_key
JOIN dims.dim_customer c ON f.customer_sk = c.customer_sk AND c.is_current = TRUE
JOIN dims.dim_product p ON f.product_sk = p.product_sk
WHERE d.year = 2025
GROUP BY d.full_date, c.customer_name, c.region, p.product_name, p.category;

5.2 Snowflake Schema
-- Snowflake schema: Normalized dimensions
-- Create normalized category dimension
CREATE TABLE dims.dim_category (
 category_sk NUMBER AUTOINCREMENT PRIMARY KEY,
 category_name VARCHAR(100),
 department VARCHAR(100)
);

CREATE TABLE dims.dim_subcategory (
 subcategory_sk NUMBER AUTOINCREMENT PRIMARY KEY,
 category_sk NUMBER REFERENCES dims.dim_category(category_sk),
 subcategory_name VARCHAR(100)
);

-- Product references subcategory
CREATE TABLE dims.dim_product_normalized (
 product_sk NUMBER AUTOINCREMENT PRIMARY KEY,
 product_id VARCHAR(50),
 product_name VARCHAR(200),
 subcategory_sk NUMBER REFERENCES dims.dim_subcategory(subcategory_sk),
 unit_price NUMBER(18,2)
);

-- Query requires multiple joins
SELECT
 cat.department,
 cat.category_name,
 sub.subcategory_name,
 p.product_name,
 SUM(f.net_amount) AS total_sales
FROM facts.fact_sales f
JOIN dims.dim_product_normalized p ON f.product_sk = p.product_sk
JOIN dims.dim_subcategory sub ON p.subcategory_sk = sub.subcategory_sk
JOIN dims.dim_category cat ON sub.category_sk = cat.category_sk
GROUP BY cat.department, cat.category_name, sub.subcategory_name, p.product_name;

5.3 Data Vault
-- Data Vault: Hub, Link, Satellite pattern
-- Hub: Business keys
CREATE TABLE vault.hub_customer (
 hub_customer_hk VARCHAR(64) PRIMARY KEY, -- Hash key
 customer_id VARCHAR(50) NOT NULL, -- Business key
 load_date TIMESTAMP_NTZ NOT NULL,
 record_source VARCHAR(100) NOT NULL
);

-- Satellite: Descriptive attributes
CREATE TABLE vault.sat_customer_details (
 hub_customer_hk VARCHAR(64) NOT NULL,
 load_date TIMESTAMP_NTZ NOT NULL,
 load_end_date TIMESTAMP_NTZ,
 customer_name VARCHAR(200),
 email VARCHAR(200),
 phone VARCHAR(50),
 address VARCHAR(500),
 hash_diff VARCHAR(64), -- Hash of all attributes
 record_source VARCHAR(100),
 PRIMARY KEY (hub_customer_hk, load_date)
);

-- Link: Relationships
CREATE TABLE vault.link_customer_order (
 link_customer_order_hk VARCHAR(64) PRIMARY KEY,
 hub_customer_hk VARCHAR(64) NOT NULL,
 hub_order_hk VARCHAR(64) NOT NULL,
 load_date TIMESTAMP_NTZ NOT NULL,
 record_source VARCHAR(100) NOT NULL
);

-- Load Hub
INSERT INTO vault.hub_customer (hub_customer_hk, customer_id, load_date, record_source)
SELECT
 MD5(customer_id) AS hub_customer_hk,
 customer_id,
 CURRENT_TIMESTAMP(),
 'SOURCE_SYSTEM'
FROM staging.stg_customers s
WHERE NOT EXISTS (
 SELECT 1 FROM vault.hub_customer h WHERE h.customer_id = s.customer_id
);

-- Load Satellite (with change detection)
INSERT INTO vault.sat_customer_details
SELECT
 MD5(s.customer_id) AS hub_customer_hk,
 CURRENT_TIMESTAMP() AS load_date,
 NULL AS load_end_date,
 s.customer_name,
 s.email,
 s.phone,
 s.address,
 MD5(s.customer_name || s.email || s.phone || s.address) AS hash_diff,
 'SOURCE_SYSTEM' AS record_source
FROM staging.stg_customers s
LEFT JOIN (
 SELECT hub_customer_hk, hash_diff
 FROM vault.sat_customer_details
 WHERE load_end_date IS NULL
) current_sat ON MD5(s.customer_id) = current_sat.hub_customer_hk
WHERE current_sat.hub_customer_hk IS NULL
 OR current_sat.hash_diff != MD5(s.customer_name || s.email || s.phone || s.address);

6. Clustering and Partitioning
6.1 Clustering Keys
-- Add clustering to fact table
ALTER TABLE facts.fact_sales CLUSTER BY (date_key, customer_sk);

-- Multi-column clustering
ALTER TABLE facts.fact_sales CLUSTER BY (date_key, product_sk, customer_sk);

-- Check clustering effectiveness
SELECT SYSTEM$CLUSTERING_INFORMATION('facts.fact_sales');

-- Check clustering depth
SELECT SYSTEM$CLUSTERING_DEPTH('facts.fact_sales');

-- Recluster table (usually automatic)
ALTER TABLE facts.fact_sales RECLUSTER;

-- Drop clustering
ALTER TABLE facts.fact_sales DROP CLUSTERING KEY;

6.2 Clustering Strategy
-- Cluster on frequently filtered columns
-- Good candidates:
-- 1. Date columns (most common filter)
-- 2. High-cardinality foreign keys
-- 3. Columns used in WHERE clauses

-- Example: Order of columns matters (most selective first)
ALTER TABLE facts.fact_sales CLUSTER BY (date_key); -- If filtering by date is most common

-- For multi-tenant data
ALTER TABLE facts.tenant_data CLUSTER BY (tenant_id, event_date);

7. Best Practices
7.1 Design GuidelinesPracticeDescriptionUse surrogate keysIsolate data warehouse from source system changesImplement SCD appropriatelyType 2 for auditing, Type 1 for simplicityDenormalize dimensionsStar schema performs better than snowflakeCluster large fact tablesOn most frequently filtered columnsAdd audit columnsTrack load dates and source systemsUse consistent namingdim_, fact_, stg_, raw_ prefixes
7.2 Performance Optimization
-- 1. Use appropriate data types
CREATE TABLE optimized_table (
 id NUMBER(38,0), -- Not VARCHAR for IDs used in joins
 amount NUMBER(18,2), -- Not FLOAT for financial data
 date_key NUMBER(8,0), -- Integer for date keys
 status VARCHAR(20), -- Appropriate length for VARCHAR
 is_active BOOLEAN -- Not VARCHAR for flags
);

-- 2. Cluster on filter columns
ALTER TABLE facts.fact_sales CLUSTER BY (date_key);

-- 3. Use search optimization for point lookups
ALTER TABLE dims.dim_customer ADD SEARCH OPTIMIZATION ON EQUALITY(customer_id);

-- 4. Create materialized views for common aggregations
CREATE MATERIALIZED VIEW mv_daily_sales AS
SELECT date_key, SUM(net_amount) AS daily_total
FROM facts.fact_sales
GROUP BY date_key;

Document ControlVersionDateAuthorChanges1.02025-01-29Data Architecture TeamInitial document
This document is maintained by the Data Architecture Team.

