Snowflake Materialized Views Guide
Document InformationFieldValueVersion1.0Last Updated2025-01-29ClassificationInternal UseOwnerData Engineering Team
1. Executive Summary
Materialized Views (MVs) in Snowflake store pre-computed query results that automatically refresh when base tables change. This guide covers creating, managing, and optimizing materialized views for improved query performance.
2. Materialized Views Architecture
┌───┐
│ MATERIALIZED VIEWS ARCHITECTURE │
├───┤
│ │
│ BASE TABLE MATERIALIZED VIEW │
│ ┌─────────────────────────────┐ ┌─────────────────────────────┐ │
│ │ │ │ │ │
│ │ ┌───────────────────────┐ │ │ ┌───────────────────────┐ │ │
│ │ │ Raw Data │ │ │ │ Pre-computed Result │ │ │
│ │ │ │ │ │ │ │ │ │
│ │ │ • Full dataset │ │ Auto │ │ • Aggregations │ │ │
│ │ │ • All columns │ │ Refresh │ │ • Filtered subset │ │ │
│ │ │ • High cardinality │──┼──────────►│ │ • Joined results │ │ │
│ │ │ │ │ │ │ │ │ │
│ │ │ 1 billion rows │ │ │ │ 1 million rows │ │ │
│ │ └───────────────────────┘ │ │ └───────────────────────┘ │ │
│ │ │ │ │ │
│ │ Changes detected via │ │ Snowflake automatically │ │
│ │ micro-partition metadata │ │ maintains the MV │ │
│ │ │ │ │ │
│ └─────────────────────────────┘ └─────────────────────────────┘ │
│ │
│ QUERY REWRITE │
│ ┌───┐ │
│ │ │ │
│ │ User Query: Optimizer Rewrite: │ │
│ │ SELECT region, SUM(amount) SELECT * FROM mv_sales_summary │ │
│ │ FROM sales GROUP BY region ──► (Uses MV instead of base table) │ │
│ │ │ │
│ │ • Query optimizer automatically uses MV when beneficial │ │
│ │ • Transparent to end users │ │
│ │ • Significant performance improvement │ │
│ │ │ │
│ └───┘ │
│ │
│ COSTS: │
│ • Storage: MV data is stored separately │
│ • Compute: Background refresh uses serverless compute │
│ • Credits: Charged for maintenance (refresh operations) │
│ │
└───┘

3. Creating Materialized Views
3.1 Basic Materialized Views
-- Simple aggregation MV
CREATE OR REPLACE MATERIALIZED VIEW mv_daily_sales
AS
SELECT
 DATE_TRUNC('day', order_date) AS sale_date,
 region,
 COUNT(*) AS order_count,
 SUM(amount) AS total_amount,
 AVG(amount) AS avg_amount
FROM raw_db.public.orders
GROUP BY 1, 2;

-- Filtered MV
CREATE OR REPLACE MATERIALIZED VIEW mv_active_customers
AS
SELECT
 customer_id,
 customer_name,
 email,
 region,
 last_order_date
FROM analytics_db.public.customers
WHERE is_active = TRUE
 AND last_order_date >= DATEADD('year', -1, CURRENT_DATE());

-- MV with expressions
CREATE OR REPLACE MATERIALIZED VIEW mv_order_metrics
AS
SELECT
 order_id,
 customer_id,
 order_date,
 amount,
 quantity,
 ROUND(amount / NULLIF(quantity, 0), 2) AS unit_price,
 CASE
 WHEN amount > 1000 THEN 'High'
 WHEN amount > 500 THEN 'Medium'
 ELSE 'Low'
 END AS order_tier
FROM raw_db.public.orders
WHERE order_status = 'COMPLETED';

3.2 Materialized Views with Clustering
-- MV with clustering for better query performance
CREATE OR REPLACE MATERIALIZED VIEW mv_sales_by_date
 CLUSTER BY (sale_date)
AS
SELECT
 DATE_TRUNC('day', order_date) AS sale_date,
 product_id,
 region,
 SUM(amount) AS total_amount,
 SUM(quantity) AS total_quantity
FROM analytics_db.facts.orders
GROUP BY 1, 2, 3;

-- Verify clustering
SELECT SYSTEM$CLUSTERING_INFORMATION('mv_sales_by_date');

3.3 Materialized Views on External Tables
-- MV on external table (caches external data)
CREATE OR REPLACE MATERIALIZED VIEW mv_external_summary
AS
SELECT
 DATE_TRUNC('month', event_date) AS event_month,
 event_type,
 COUNT(*) AS event_count,
 COUNT(DISTINCT user_id) AS unique_users
FROM ext_events
WHERE event_date >= DATEADD('year', -1, CURRENT_DATE())
GROUP BY 1, 2;

-- This significantly improves query performance on external tables
-- by storing aggregated results in Snowflake storage

4. Materialized View Limitations and Supported Operations
4.1 Supported Operations
-- ✓ Supported: Aggregations
CREATE MATERIALIZED VIEW mv_agg AS
SELECT region, SUM(amount) AS total FROM orders GROUP BY region;

-- ✓ Supported: Filters (WHERE)
CREATE MATERIALIZED VIEW mv_filter AS
SELECT * FROM orders WHERE status = 'ACTIVE';

-- ✓ Supported: Expressions and functions
CREATE MATERIALIZED VIEW mv_expr AS
SELECT
 id,
 UPPER(name) AS name_upper,
 DATE_TRUNC('month', created_at) AS created_month,
 CASE WHEN amount > 100 THEN 'HIGH' ELSE 'LOW' END AS tier
FROM orders;

-- ✓ Supported: DISTINCT
CREATE MATERIALIZED VIEW mv_distinct AS
SELECT DISTINCT region, category FROM orders;

-- ✓ Supported: UNION ALL (single table)
CREATE MATERIALIZED VIEW mv_union AS
SELECT id, amount, 'TYPE_A' AS source FROM orders_a
UNION ALL
SELECT id, amount, 'TYPE_B' AS source FROM orders_b;

4.2 Unsupported Operations
-- ✗ NOT Supported: JOINs between tables
-- This will fail:
-- CREATE MATERIALIZED VIEW mv_join AS
-- SELECT o.*, c.name FROM orders o JOIN customers c ON o.customer_id = c.id;

-- ✗ NOT Supported: Window functions
-- This will fail:
-- CREATE MATERIALIZED VIEW mv_window AS
-- SELECT *, ROW_NUMBER() OVER (PARTITION BY region ORDER BY date) FROM orders;

-- ✗ NOT Supported: Subqueries
-- This will fail:
-- CREATE MATERIALIZED VIEW mv_subquery AS
-- SELECT * FROM orders WHERE amount > (SELECT AVG(amount) FROM orders);

-- ✗ NOT Supported: UDFs
-- ✗ NOT Supported: Non-deterministic functions like CURRENT_TIMESTAMP()
-- ✗ NOT Supported: HAVING clause (use WHERE after GROUP BY instead)

-- WORKAROUND for JOINs: Use Dynamic Tables instead
CREATE DYNAMIC TABLE dt_orders_with_customers
 TARGET_LAG = '1 hour'
 WAREHOUSE = etl_wh
AS
SELECT o.*, c.customer_name
FROM orders o
JOIN customers c ON o.customer_id = c.customer_id;

5. Managing Materialized Views
5.1 View MV Information
-- List materialized views
SHOW MATERIALIZED VIEWS;
SHOW MATERIALIZED VIEWS IN SCHEMA analytics_db.public;

-- Describe MV
DESCRIBE MATERIALIZED VIEW mv_daily_sales;

-- View MV definition
SELECT GET_DDL('MATERIALIZED_VIEW', 'mv_daily_sales');

-- Check MV status and refresh info
SELECT
 name,
 database_name,
 schema_name,
 is_secure,
 cluster_by,
 rows,
 bytes,
 refreshed_on,
 compaction_on,
 behind_by
FROM INFORMATION_SCHEMA.MATERIALIZED_VIEWS
WHERE table_schema = 'PUBLIC';

5.2 Refresh Management
-- Materialized views refresh automatically
-- But you can check refresh status:

SELECT
 name,
 database_name,
 schema_name,
 behind_by,
 refresh_mode,
 last_refresh_date
FROM TABLE(INFORMATION_SCHEMA.MATERIALIZED_VIEW_REFRESH_HISTORY())
ORDER BY last_refresh_date DESC
LIMIT 20;

-- Suspend MV refresh (stop automatic maintenance)
ALTER MATERIALIZED VIEW mv_daily_sales SUSPEND;

-- Resume MV refresh
ALTER MATERIALIZED VIEW mv_daily_sales RESUME;

-- Force refresh (rarely needed)
-- MVs refresh incrementally when base table changes

5.3 Modifying Materialized Views
-- Rename MV
ALTER MATERIALIZED VIEW mv_daily_sales RENAME TO mv_daily_sales_v2;

-- Add/modify clustering
ALTER MATERIALIZED VIEW mv_daily_sales CLUSTER BY (sale_date, region);

-- Remove clustering
ALTER MATERIALIZED VIEW mv_daily_sales DROP CLUSTERING KEY;

-- Make secure (hide definition from non-owners)
ALTER MATERIALIZED VIEW mv_daily_sales SET SECURE;

-- Drop MV
DROP MATERIALIZED VIEW mv_daily_sales;

-- Drop MV if exists
DROP MATERIALIZED VIEW IF EXISTS mv_daily_sales;

6. Query Rewrite
6.1 Automatic Query Rewrite
-- Snowflake automatically rewrites queries to use MVs
-- Example: If you have this MV:
CREATE MATERIALIZED VIEW mv_region_totals AS
SELECT region, SUM(amount) AS total_amount
FROM orders
GROUP BY region;

-- This query will automatically use the MV:
SELECT region, SUM(amount) AS total_amount
FROM orders
GROUP BY region;
-- Query profile will show "MATERIALIZED_VIEW_SCAN" instead of "TABLE_SCAN"

-- Query with additional filter (may still use MV)
SELECT region, total_amount
FROM (
 SELECT region, SUM(amount) AS total_amount
 FROM orders
 GROUP BY region
)
WHERE total_amount > 10000;

6.2 Query Rewrite Settings
-- Check if query rewrite is enabled (default: TRUE)
SHOW PARAMETERS LIKE 'ENABLE_QUERY_ACCELERATION';

-- Verify MV was used in query (check query profile)
-- In Snowsight: Query Profile > Look for "Materialized View" operator

-- Force query to not use MV (for testing)
ALTER SESSION SET USE_CACHED_RESULT = FALSE;
SELECT /*+ NO_QUERY_REWRITE */ region, SUM(amount)
FROM orders
GROUP BY region;

7. Monitoring and Costs
7.1 Monitoring MV Usage
-- View MV refresh history
SELECT
 name,
 database_name,
 schema_name,
 credits_used,
 num_rows_inserted,
 num_rows_deleted,
 refresh_start_time,
 refresh_end_time,
 refresh_action
FROM SNOWFLAKE.ACCOUNT_USAGE.MATERIALIZED_VIEW_REFRESH_HISTORY
WHERE start_time >= DATEADD('day', -7, CURRENT_TIMESTAMP())
ORDER BY refresh_start_time DESC;

-- Monitor MV storage
SELECT
 mv.name AS mv_name,
 mv.rows,
 mv.bytes / 1024 / 1024 AS size_mb,
 base.rows AS base_rows,
 base.bytes / 1024 / 1024 AS base_size_mb,
 ROUND(mv.bytes * 100.0 / NULLIF(base.bytes, 0), 2) AS pct_of_base
FROM INFORMATION_SCHEMA.MATERIALIZED_VIEWS mv
CROSS JOIN (
 SELECT SUM(row_count) AS rows, SUM(bytes) AS bytes
 FROM INFORMATION_SCHEMA.TABLES
 WHERE table_name = 'ORDERS' -- base table
) base;

7.2 Cost Analysis
-- MV maintenance costs (serverless)
SELECT
 DATE_TRUNC('day', start_time) AS usage_date,
 name,
 SUM(credits_used) AS total_credits,
 SUM(num_rows_inserted + num_rows_deleted) AS total_rows_changed
FROM SNOWFLAKE.ACCOUNT_USAGE.MATERIALIZED_VIEW_REFRESH_HISTORY
WHERE start_time >= DATEADD('month', -1, CURRENT_TIMESTAMP())
GROUP BY 1, 2
ORDER BY total_credits DESC;

-- Storage costs
SELECT
 name,
 bytes / 1024 / 1024 / 1024 AS size_gb,
 -- Estimate monthly storage cost ($23/TB/month standard)
 (bytes / 1024 / 1024 / 1024 / 1024) * 23 AS estimated_monthly_storage_cost
FROM INFORMATION_SCHEMA.MATERIALIZED_VIEWS;

8. Use Cases and Patterns
8.1 Common Use Cases
-- 1. Dashboard Acceleration
CREATE MATERIALIZED VIEW mv_dashboard_kpis AS
SELECT
 DATE_TRUNC('day', order_date) AS report_date,
 region,
 COUNT(DISTINCT customer_id) AS unique_customers,
 COUNT(*) AS order_count,
 SUM(amount) AS total_revenue,
 AVG(amount) AS avg_order_value
FROM analytics_db.facts.orders
WHERE order_date >= DATEADD('year', -2, CURRENT_DATE())
GROUP BY 1, 2;

-- 2. External Table Performance
CREATE MATERIALIZED VIEW mv_external_events AS
SELECT
 DATE_TRUNC('hour', event_timestamp) AS event_hour,
 event_type,
 COUNT(*) AS event_count
FROM ext_event_data
GROUP BY 1, 2;

-- 3. Pre-aggregation for BI Tools
CREATE MATERIALIZED VIEW mv_product_performance AS
SELECT
 p.category,
 p.subcategory,
 DATE_TRUNC('month', o.order_date) AS order_month,
 SUM(o.quantity) AS total_units,
 SUM(o.amount) AS total_revenue,
 SUM(o.amount - o.cost) AS total_profit
FROM orders o
JOIN products p ON o.product_id = p.product_id
GROUP BY 1, 2, 3; -- Note: This would need Dynamic Table since it has JOIN

8.2 MV vs Dynamic Tables Decision MatrixCriteriaMaterialized ViewDynamic TableJOINsNot supportedFully supportedWindow FunctionsNot supportedSupportedRefresh ControlAutomatic onlyTARGET_LAG configurableMaintenance CostServerless (auto)Warehouse-basedQuery RewriteAutomaticNot automaticBest ForSingle-table aggregationsComplex transformations
9. Best Practices
9.1 Design GuidelinesPracticeDescriptionTarget expensive queriesMVs for frequently run, expensive aggregationsAvoid small tablesMV overhead not worth it for small datasetsMonitor refresh costsHigh-churn tables may have expensive MV maintenanceUse clusteringCluster MVs on commonly filtered columnsConsider Dynamic TablesFor JOINs and complex logic
9.2 Performance Tips
-- 1. Cluster MV on filter columns
CREATE MATERIALIZED VIEW mv_orders_by_date
 CLUSTER BY (order_date)
AS
SELECT order_date, region, SUM(amount) AS total
FROM orders
GROUP BY 1, 2;

-- 2. Pre-aggregate at useful grain
-- Good: Daily aggregates for dashboards
CREATE MATERIALIZED VIEW mv_daily_metrics AS
SELECT DATE_TRUNC('day', ts) AS day, COUNT(*) AS cnt
FROM events GROUP BY 1;

-- 3. Filter to reduce MV size
CREATE MATERIALIZED VIEW mv_recent_orders AS
SELECT * FROM orders
WHERE order_date >= DATEADD('year', -1, CURRENT_DATE());

-- 4. Monitor and adjust
-- Suspend MVs that are costly but rarely used
ALTER MATERIALIZED VIEW mv_expensive_unused SUSPEND;

Document ControlVersionDateAuthorChanges1.02025-01-29Data Engineering TeamInitial document
This document is maintained by the Data Engineering Team.

